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ABSTRACT 

In this article we investigated the modulation of nonlinear ion acoustic waves in a weakly 

relativistic, warm, unmagnetized and adiabatic plasma whose constitutes are ion fluid and 

superthermally distributed electrons using the multiple scales approach. The basic system of 

equations is reduced to a finite wave number nonlinear Schrödinger-type equation at the 

second order of the perturbation theory and for small wave number limit the nonlinear 

Schrödinger-type equation is derived. Moreover the reductive perturbation technique is applied 

to this system and Korteweg-de Vries equation is obtained. For small wavenumber limit, it is 

found that the dispersion coefficient and nonlinear coefficient of the nonlinear Schrödinger-

type equation are reduced to the coefficients of nonlinear Schrödinger-type equation obtained 

from Korteweg-de Vries (K-dV) equation. The dependence of the phase velocity and the group 

as well as the domain of the stability and the instability on the temperature ratio, the relativistic 

factor 
  

  
  and the superthermal parameter is investigated. 

      Keywords: 

  Ion acoustic waves, Weakly relativistic, Superthermal electrons. 

 

 

 

1.   INTRODUCTION 

One of the basic wave processes in plasma is the ion acoustic waves (IAWs), which has been studied for 

several decades both theoretically and experimentally.[1-7] The first observation of ion acoustic solitons 

has been reported experimentally by Ikezi et al.[8]. Also in 1977, Watanabe [9] reported the experimental 

observation of the modulation instability of   the monochromatic IAWs.  

The relativistic effect exists when the particle speed approaches that of light, but when the particle speed 

is much less than that of light, ion waves will exhibit nonrelativistic. El-Labany[10] and El-Labany et 

al.[11] have been studied theoretically the modulation instability of IAWs for different distribution by 

using the multiple scales method. Xue et al.[12] have used the reductive perturbation technique to study 

the modulation instability of IAWs in a warm plasma. The modulation instability of cold nonrelativistic 

behavior limits plasma has been studied for different distribution. The modulation instability has been 
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studied using nonthermally distributed electrons by Zhang et al.[13], q-nonextensively distributed 

electrons by Bains et al.[14] and kappa ( ) distribution by Guo and Mei[15] and Chowdhury et al.[16] .  

The superthermal distribution describes the highly energetic particles which coexist in space and 

laboratory plasmas and their characteristics are deviated from the Maxwellian distribution. Sometimes 

these particles may be described by Lorentzian or   distribution which also known as superthermal 

distribution [17-18]. Vasyliunas [19] introduced this distribution and its relation to Maxwellian 

distribution.  The    distribution may arise due to the external forces acting on a wave particle interaction 

or the neutral space plasmas. In fact this distribution goes back to Maxwellian distribution for limit of 

large spectral index [18] i.e.,        

There are different approximation techniques for describing the nonlinear evolutions in plasmas. Such as 

the multiple scales method [10-11], derivative expansion method [20] and Krylov-Bogoliubov-

Mitropolsky [21] method. These techniques describe the small deviations for system from the equilibrium 

state of the linear wave. In this work we use the multiple scales method because it's more general and 

dependence on removing the secular terms. 

However, the system of a weakly relativistic unmagnatized warm adiabatic plasma consisting inertial ions 

fluid and superthermally ( ) distributed electrons has not been investigated; this is our motive of the 

present investigation.  

This article organized as follows: 

The basic governing equations of the model and derivation of the non-linear Schrodinger-type (NST) 

equation are presented in section 2. We derive the small wave number approximation Korteweg-de Vries 

(K-dV) equation in section 3. We transform the K-dV equation obtained in section 3 to the NST equation 

in section 4 and results and discussion in section 5.  Finally we devoted section 6 to conclusion. 

 

2. GOVERNING EQUATIONS AND DERIVATION OF THE NST EQUATION 

Consider a simple model of adiabatic unmagnetized collisionless weakly relativistic plasma that contains 

warm ion species together with superthermally distributed electrons. The one-dimensional basic equations 

can be written in normalized form as 

  

  
 
 (  )

  
    (1) 

(
 

  
  

 

  
*       

  

  
 
  

  
    (2) 

   

   
      (3) 

   .  
 

.  
 
 /
/

   
 
 

          
     

   (4) 

 

where,   

 

100



El-Labany, et al  AJBAS Volume 1, Issue 2, 2020 

 

 

   
.  

 
 
/

.  
 
 
/
 

   
.  

 
 
/ .  

 
 
/

 .  
 
 
/
  

   
.  

 
 / .  

 
 / .  

 
 /

 .  
 
 
/
  

}
 
 
 
 
 

 
 
 
 
 

   

 

(5) 

 

n ,    are the numbers densities of the ions and electrons normalized by unperturbed ion density   , u is 

the flow speed of the ions normalized by thermal velocity (      )
 

  ,   is the electrostatic potential 

normalized by thermal potential  (      ) ,   is the space coordinate normalized by Debye length 

    (        
   )

 

 , t is the time variable normalized by the inverse of the ion plasma frequency 

   
   (        )

 

  .      is the ratio of ion temperature Ti to electron temperature Te  and the 

parameter   stands for the strength of superthermally, where m is the ion mass,     is the Boltzmann 

constant and e is the electron charge. For a weakly relativistic effect, the relativistic factor   is 

approximated by (Gill et al.[ 23]) 
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 (6) 

To obtain the NST equation, we employ the general method of multiple scales. In this method we 

introduce the stretched variables (El-labany et al.) [11] 
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Using this method, the time and space derivatives in Eqs (1-4) are written as  
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where   is a small dimensionless parameter characterizes  the size of the perturbed amplitude and   

characterizes the group velocity (  
  

  
); will be determined later.  We expand the dependent variables n, 

u and Ф in terms of the expansion parameter   as (EL-Labany & EL-Labany et al.) [10-11] 
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where n, u and Ф are satisfied the reality condition    
( )

   
( ) 

, where the asterisk denotes  the complex 

conjugate.   

      Using Eqs. (7) into the basic equations (1)-(4), we obtain to the first order of    and      components 

as  
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Then, the linear dispersion relation and group velocity λ are given respectively by  
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The second order harmonic O(  ) with      are given by, 
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and for     components,  
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i.e. no    dependent. 

For      components,  
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However, the second-order quantities with zeroth harmonic are determined from third order; O(  ) and 

are given by,  
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Using the above mentioned quantities and O(  ) with     we get the NST equation,  
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For finite wave number region, equation (15) satisfies the evolution of the complex amplitude of the 

nonlinear ion acoustic waves (IAWs), propagating in a weakly relativistic warm with superthermally 

distributed electrons on the basis of the fluid model. 

 

For small wave number, equation (15) reduces to  
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3. DERIVATION K-DV EQUATION FOR THE SYSTEM 

 

 We apply the reductive perturbation theory (Nejoh[2]), to show that the amplitude of the perturbed ion 

density in a weakly relativistic warm plasma and superthermally distributed electrons in the small-

wavenumber limit is governed by the K-dV equation. To show that we introduce the stretched variables   

and   as (Pakzad and Gill et al.[22-23]) 
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and we expand the dependent variables n, u, and    in   as  
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where   ̃ is the perturbed ion density and   is the ordering parameter and is a measure of the size of the 

wavenumber k; that is,    . 
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Introducing Eqs. (17) into the basic set of Eqs. (1)-(3) and equating the similar power coefficients, to the 

lowest order terms of   we have 
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The Poisson's equation, gives the compatibility condition  
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Using the results of the pervious order and eliminating the second order perturbed quantities with some 

algebraic manipulations we obtain the KdV equation,  
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4. Derivation of NST equation from K-dV equation (small wave number approximation) 

 

To derive the NST equation from K-dV equation (20) we follow El-Labany[10] and El-Labany, et al. [11]  

we expand  ̃ as 

 ̃  ∑  ̃ 
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 where the stretched variables          are related to         by 
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  and   will be determined later and the time and space derivatives in (20) are expressed by ( El-Labany 

& El-Hanbaly [24]) 
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 Using (21) and (22) into (20), then the reduced equation of order m is written as:  
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 The first-order terms (m=1) with       from equation (23) gives 
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and the linear dispersion relation is given by  

  
  

   
 
     

From equation (22), the Second-harmonic components of the second-order terms (m=2) is given as 
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Then, the compatibility condition for non-trivial solution is written as  

   
 

   
 
     

The zeroth-harmonic components of the third-order terms (m=3) mth reduced equation are written as 
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Finally, from the third-order terms of the reduced equation for     we obtain the NST equation  
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The same as those obtained from the small wavenumber limit of equation (15) i.e. equation (16). 

 

4.     RESULTS AND DISCUSSION 

 

We have numerically analyzed Eq. (9a) to examine the linear properties of the IAWs for different values 

of   and 
  

 
  (see figure 1 a and b). It is obvious from these figures that the phase velocity increases with 

increasing  . Unlike the temperature ratio ( ), when the velocity ratio .
  

 
/ increases the phase velocity 

decreases. Also, we examine numerically the group velocity (see Eq. 9b) properties of IAWs for different 

values of    and 
  

 
  (see figure 2). The group velocity decreases with increasing superthermal parameter 

   but increases with increasing   and independent on increasing  
  

 
.  

Now, we investigate the stability and instability regions of the ion acoustic waves for our plasma model 

on the basis of the NST equation (15). Based on the stability analysis and the importance of PQ 

sign,[16,25] if  PQ < 0, the amplitude of the modulated wave will be "stable" and if PQ > 0, the amplitude 

of the modulated wave will be "unstable". Two regions of stable and unstable give two stationary 

solutions: Stable solutions called dark envelope soliton for "negative" PQ, and unstable solutions called 

bright envelope soliton for "positive" PQ. According to this analysis, the modulation instability of IAWs 

has been studied. Figure 3 shows the variation of the critical wave numbers (higher and lower wave 

number) with 
  

 
 for different    . It is clear from these figures that the upper and lower critical 

wavenumber decrease with increasing  . We note that that when the temperature ratio increase the stable 

region decrease as the phase and the group velocities increase with increase   , thus the system becomes 

more unstable. Which, the bright and yellow color represented the stability and instability regions 

respectively. Therefore, the rouge waves may propagate for plasma parameters within the unstable region 

(PQ > 0). Figure 4 shows the variation of the critical wave numbers with   for different superthermal 

parameter  , the upper and lower critical wavenumbers also decrease with increasing superthermal 

parameter  . Because the superthermally distributed electrons contain a large number of electrons that 

have high energy, which cause instability in the system and thus reduce the stable areas of the system. 

Then, when the kappa parameter increases (   ) the superthermal distribution goes back to 

Maxwellian distribution as shown in Figs. 5 and 6. 

Finally, we note that the system is strongly dependent on the superthermal parameter   and this is 

important for studding the highly energetic particles which coexist in space plasmas. For examples, 

superthermal electrons have been observed in the Earth's bow-shock,[26] and in the magnetospheres of 

Jupiter and Saturn.[27-28] 
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(a) 

 
(b) 

 

Fig. 1.The variation of  ̃ (wave frequency) with wavenumber k: (a) for different values of   and  
  

 
 

   , (b) for different values of  
  

 ⁄  and        . Here, the superthermal parameter      . 

 

 

 
 

 

Fig. 2.The variation of  ̃ (group velocity) with superthermal parameter  : (a) for different values of     

and 
  

 
    , (b) for different values of  

  

 
  and      . Here, the wavenumber      . 

 

 

 

 

 

(a) (b) 
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Fig. 3. The contour plot of the product PQ = 0, against k and  
  

 
 : (a) for       , (b) for       .Here, 

the superthermal parameter   =2, where the (bright) yellow region represents the region in which 

(stability) instability.  

 

 

 

 
 

  

Fig. 4. The contour plot of the product PQ = 0, against k and    : (a) for the superthermal parameter   

=2, (b) for the superthermal parameter   =3. Here, 
  

 
      where the (bright) yellow region represents 

the region in which (stability) instability.  

 

 

 

(a) (b) 

(a) (b) 
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Fig. 5. The contour plot of the product PQ = 0, against k and  
  

 
: (a) for large superthermal parameter   

=35, (b) for Maxwellian distribution .Here,       and 
  

 
    , where the (bright) blue region 

represents the region in which (stability) instability. 

 

 

 

 
 

 

Fig. 6. The contour plot of the product PQ = 0, against k and   : (a) for large super thermal parameter   

=35, (b) for Maxwellian distribution. Here,       and  
  

 
    , where the (bright) blue region 

represents the region in which (stability) instability. 

 

 

 

 

(a) (b) 

(a) (b) 
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5.   CONCLUSION 

 

In this article, we investigated the modulation of the nonlinear acoustic wave in a warm unmagnetized 

plasma consists of superthermal electrons and inertial adiabatic ions. Using the multiple scales approach a 

NST equation is found whose coefficients of the dispersion and nonlinear terms are dependent on    and 

the streaming velocity through   and   . For finite amplitude we derived K-dV equation for this system, 

which is transformed into NST equation. The small wavenumber limit of the coefficients of the original 

NST equation agree with those NST equation obtained from K-dV. Moreover we obtained the effect of    

and    as domain of the stability (    ) and the unstable region (    ) by determining the critical 

wave at which the sign of PQ changes from positive to negative and vice versa. Also we considered the 

case     to check the stability of our work. A good agreement is found with work done by El-

Labany.[10] . Finally, The dependence of the phase velocity and the group as well as the domain of the 

stability and the instability on the physical parameters   
  

  
  and   is investigated. 

 

Appendix  

 

To investigate the coefficients of the NST equation for small limit wavenumber (k), firstly we calculate 

the different terms appearing in these coefficients. 
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Then, the coefficients P and Q are given by 
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