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ABSTRACT 

In this article, a new third order finite difference scheme for solving initial value 

problems for conservation laws is introduced. The advantages of this scheme are:  it 

is a third order accuracy in space and time, is simple to implement, it has the lowest 

order of dissipation which reduces the oscillations generated by the numerical 

methods. The stability of the new scheme is proved for initial boundary value 

problems for linear and nonlinscalar problems. Also, the new scheme is 

reformulated to be total variation diminishing (TVD) i.e., oscillations free. For the 

nonlinear systems of equations,  the extension of the new scheme is presented. Many 

numerical examples are presented and compared with the exact solutions and other 

methods.  
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1. INTRODUCTION 

         Since sixthy years, a substantial and productive effort to develop accurate numerical methods for 

hyperbolic conservation laws has been done. We are concerned with improved high order finite difference 

schemes. In fact, there are two types of difference methods, dissipative and dispersive schemes. For 

examples, leap frog scheme is strictly dispersive (non-dissipative) while the  Lax Wendroff (L-W) scheme is 

dissipative scheme. In fact, the non-dissipative scheme conserves the 2L  norms for linear equations. This 

reflects a property of the original differential equations. In fact, for many applications it is inecessary to 

minimize the energy loss. But  for other applications it is better  to damp the energy in the high frequencies, 

this can be done by using dissipative schemes. The dispersive schemes introduce the spurious oscillations 

behind the waves. These effects are less noticeable in dissipative schemes since the modes with greatest 
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phase error are those which are mostly heavily damped. For this reason, it is better to introduce dissipative 

mechanisms into dispersive difference schemes. Turkel [4] introduced a composite scheme which is a three-

step method. Here we introduced another method combining the diffusion scheme (dissipative) and leap frog 

scheme (dispersive). The resulting method and its stability properties are proved for initial and initial 

boundary value problems. The new scheme has the following advantages:  simplicity, third order accuracy 

and that it has the lowest order of dissipation. To see the advantages of the scheme, comparisons with the 

leap frog scheme and the third order scheme presented in[5,3] are carried out. From the numerical results it is 

noticed that the new scheme gives accurate approximations. However, the heigh order accurate schemes are 

applicable only for linear system or nonlinear system with smooth functions.for  nonlinear systems with 

discontinuies m, those schemes introduce spurious oscillations near discoutinuities.the monotone schemes 

approximate the solution without oscillation and converge to the exact solutions . but the monotone schemes 

can not be more than first order accurate so mear the discontinuities to over come these difficulties ,we add 

an anti-diffusive term to the scheme . in fact this processes not successful and efficient. But  this process is 

not usually successful and efficient in practice as in theory. [2] introduced the concept and theory of TVD 

schemes .which can be high order accurate and without oscillations  . we applied the TVD techniques [5] and 

[6,10] to our third order scheme  oscillation by using the flux limiters . Also , we extend the scheme to solve 

nonlinear scalar problems as well as system of nonlinear equation. the new TVD scheme .remove the 

spurious . The paper is consists of seven chap. Give . In section 2, we present the third order scheme and 

stability properties are proved for initial and initial boundary value problems. The TVD formulation of the 

new scheme is presented in section 3. In section 4, the extension to nonlinear hyperbolic conservation laws is 

presented. Numerical tests on the linear and nonlinear equations are performed in section 5. Numerical 

results are presented and compared with the exact solutions and other methods. Conclusions are presented in 

section 7. 

 

2. NUMERICAL SCHEME  

Consider the hyperbolic conservation law  

            ( )                                                                                            (2.1a) 

 (   )    ( )                            (    )   ( )                                                    (2.1b) 

Where f(u) is the physical flux. Firstly, we are going to discuss the linear case f(u)=au, where a is a wave 

propagation speed. In this paper we use a uniform x-t grid, with mesh size h in x-direction and k in t-direction 

with a fixed ratio
h

k
 . Let 

n
ju  denote the numerical solution at the point (x,t) = (jh ,nk) for j=0,1,2,...,N and  

n=0,1,2,... . To get  the approximate solution n
ju , we assume two step method: 
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The parameter   c = a is the Courant number. The (2.2a) step is the diffusion scheme and the second is the 

Leap frog scheme. The scheme (2.2) can be written in one step method as follows:   

  
      

  
 

 
(    
      

 )   
  

 
 (    

     
      

 )               

                                                                                                             (   )         
 

Using Taylor expansion, we see that a scheme (2.3) is third order in both space and time, i.e., of order

)kh( 33  .  
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Stability Analysis 

Now, we analyse the propagation of the initial data by taking a single Fourier mode  

)xt(ie)t,x(u    , where  is the frequency and  is the wave number and each mode are transported with 

unit amplitude at a constant speed



c . Now, we discuss the properties of the scheme (2.3). Firstly,by the 

Von Neumann method for stability where we assume that the finite difference approximation 
n
ju can be 

written as  

jhx,eg)t,x(u j
hin  

                                     (2.4) 

Substituting in (2.3) we obtain the amplification factor g as 

    =1- 4  (𝜉 )  (    ) 

 

Therefore, the scheme (2.3) is stable if and only if  

                                                    1c                                                                  (2.5)  

We notice from (2.5) that the order of dissipation is four and the accuracy is three, while all the second (and 

higher) order schemes have at least sixth order of dissipation. Therefore, the scheme (2.3) with the lowest 

order of dissipation among all second and higher order schemes is very appropriate for solving wave 

propagation problems. Since  the scheme (2.3) uses a five-point lattice .  We define the following boundary 

conditions   
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These boundary conditions are written in the form  
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Now we discuss the stability of the method defined by (2.3) and (2.6) in the sense of GKS  [1]. Using the 

stability definition 3.3 in [1]  and theorem 5.4 which showed that the stability of two related quarter-plane 

problem is equivalent to stability for the two boundary problems. The quarter-plane problems are obtained by 

removing one or the other of the boundaries and extending the domain appropriately to  . Equation (2.4) 

can be written in more convenient form  

njn
j zu 

 

where 
.e,ez hi,ki  
 If   or  is  real, then  1or1z   respectively , but 

 and
  may be 

complex.  

 

2.2 GKS Stability Theorem  
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Models (2.3) and (2.6) are stable if and only if they admit no Eigen solutions ( ) with 1z  .  

For the right quarter problem (2.3)  xb , c > 0, the characteristic equation associated with scheme (2.3) 

takes the form  

0)
2

c

2

c
()cz1()

2

c

2

c
()(P

2
224

2

1                                (2.7) 

Lemma 2.1  

Let .e,ez hi,ki    therefore 

a)  the roots of )(P1   {z=1} are given by  

c1

c1
iq,
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iq,1q,1q 4321
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
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


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b) If 1z  , 1z  then the roots of )(P1   is divided into two groups (independent of z) : 

1)z(and1)z(,1)z(,1)z(where),,(S),,(M 33214321 
 

and the inequalities are taken strictly if 1z  .  

c) The two roots 21,  of part (b) are continuations of the roots iq  (at z=1)  

0c1),q,q(M

1c0),q,q(M

43

21





 

Proof  

The part (a) is trivial.  

The part (b) follows from ([1] ) .  

c)  From (b) we have that for any 1z,1z   only two roots for which 1   Firstly, we consider c > 0. It 

is easy to see that   1 cannot be a double root at z=1. If we consider a perturbation z=1+   with  >0, and 

if  1 , then  we get from (2.7) that 0
2c2





 . Therefore, the continuation of 1q  is in the unit 

circle for    >0 and 1q  is always in M. To see the continuation of the root 1q2   we take 

)1(,1z   then we get 0
2c2





  Therefore the continuation of 2q  is inside the unit 

circle for  c>0.  

For c<0, the perturbation argument observable that if 01,1z  then  is outside the unit circle 

for 0 and similarly for 2q is outside the unit circle. Therefore, according to GKS theorem, )q,q( 43  are 

inside the unit circle. 

 

Theorem 2.1  

 For fixed c, the scheme (2.3) with the boundary formula (2.6) is stable in the sense of GKS theory.  

Proof  

32



Amr H. Abdalla, et al AJBAS Volume 1, Issue 1, 2020  

 

For 0c  the general solution of the equation (2.3) is 21
j
22

j
11j

~

whereu   are the roots of the 

characteristic equation 0)(P1   i.e., 22111

~

u   and 210

~

u  . The characteristic equation 

associated with the boundary condition (2.6) is given by 

)2()1()(Q 2
1                                                           (2.8) 

 For the condition (2.6a) we have the boundary equations (see [4]for details)  
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                                  (2.9)  

This has nontrivial solutions if   =0 or  =1 or 
2

31
  . As before  =1 is can not be a double root of  

)(P1   and therefore does not satisfy (2.10) while   =0 is the trivial solution. It remains only to verify that 

2

31
 is not double root. It is clear that 

2

31
 has a modulus greater than one and therefor is not 

in M. Similarly, the root 
2

31
  is not double root.  

For c < 0, and the boundary equations   
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This has nontrivial solutions if   =0 or  =1or  =-1.  As before the cases  =1,0 are is not difficult and -1 is 

not double root. Therefore, the stability is proved.  

 

The GKS theorem may be written in another form (see[1]) 

“The homogeneous equations (2.9) have no nontrivial solutions for 1z  ” i.e.,  

   0)z(Ddet                                                                  (2.10) 

The system (2.9) has a nontrivial solution only if 1and 2121   and since 1  is not 

double root the n Q cannot be vanished. Hence no simple root can satisfy (2.10). For a double root,  
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This system has a nontrivial solution only if 21211 )iii,1and1)ii,1)i  . We have, 

from the last lemma, 1  is not in M for c<0. Therefore  no simple root can satisfy (2.10). For a 

double root, we have the system  
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3. NUMERICAL EXAMPLES 

 Firstly, we show the accuracy of the schemes on the linear scalar problems.    

Example 1  

 We solve the transport equation  

]1,1[x,0uu xt                                                 (3.11a) 

           subjected to periodic initial condition   

)x(sin)0,x(u                                                          (3.11b) 

            and periodic boundary conditions. We compute the results t = 2. Table 1 shows the convergence 

rates and errors in 1L  norm of the scheme (2.3) with (2.6) which denoted by Amro and the third order 

scheme presented in [5] denoted by Toro. We note that both the schemes are third order accurate. We 

notice that our scheme is more accurate. Moreover, the size errors by Amro are smaller than those by 

Toro scheme. 

 

Table 1.Convergence rates and errors for example 1 at t=2. 

N TORO TORO Amro Amro 

 errorL1

 orderL1

 errorL1

 orderL1

 

80 

160 

320 

640 

3.65E-3 

4.65E-4 

5.95E-5 

7.63E-6 

 

2.97 

2.97 

2.96 

2.72E-3 

3.06E-4 

3.74E-5 

4.17E-6 

 

3.15 

3.03 

3.16 

 

            

4. TVD VERSION OF THE THIRD ORDER SCHEME  

 

 we will construct the TVD version of the scheme (3.3) and (3.6) presented in the last section. Firstly, we 

consider the linear hyperbolic conservative law  

au)u(f,0)u(fu xt  ,                                      (4.1) 

where a constant. The scheme (2.3) may be written in the conservative form  






 


 n

2
1j

n

2
1j

n
j

1n
j FFuu                                                (4.2) 

here  
2
1j

F


 is the numerical flux takes the form [5] 

   uAuAuAaua
2

1
auau

2

1
F

2
1

2
1

2
1

2
1

2
1 Mj2Lj1j0j1jjj                         (4.3) 
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where               

4

c
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1
A 210                                (4.4) 

    L= -1,M=1     for  c>0         and       L=1, M=-1  for      c<0 and  j1jj uuu
2

1                                    

4.1 TVD form of the method  

The total variation )u(TV n

j
 of the mesh function u

n
 is defined as  










  n

j
n
j

n
1j

n uuu)u(TV
2

1                                         (4.5) 

The scheme (4.2) is said to be TVD scheme if  

)u(TV)u(TV n1n                                                          (4.6) 

which  means that the total variations not increased as time evolves, so that TV(u
n
) for any time n is bounded 

by TV(u
0
) of the initial data. If the initial data of equation (4.1) is smooth, then the total variation of the 

solution remains constant and if the shock is formed the total variation decreases. 

To make the scheme TVD, we use Harten’s theorem   [2] , that states that the scheme written as  

uCuBuu
2

1j
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1j
2

1j
2

1j

n
j

1n
j 

                                          (4.7) 

is TVD scheme provided that   

1CB0C,0B
2

1j
2

1j
2

1j
2

1j



                          (4.8) 

where 
2

1jB   and 
2

1jC   are data dependent coefficients i.e., functions of the set { 
n

ju }.  

Applying the TVD constraint on (4.3) by a flux limiter functions gives   

    MjMj2jLj1j0j1jjj uAauAuAaua
2

1
auau
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1
F

2
1

2
1

2
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2
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       (4.9) 

where j  and Mj  are the flux limiter functions.   

Theorem 4.1  

Scheme (4.2) and (4.9) is TVD for 1c  if the limiter j  is determined by  

                                  
)AArA(

r)c1(

20j1

j

j



                                               (4-10a) 
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*
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j
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*
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the upwind-downward flow parameter
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and  is  
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Proof   see ([5,10]).  

 Using theorem to the scheme (4.2), (4.9), therefore the flux limiter takes the form   
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Therefore, the scheme (4.2), (4.9) is TVD.  
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5. EXTENSIONOF THE SCHEME  TO NONLINEAR SCALAR HYPERBOLIC 

CONSERVATION LAWS  

To extend the scheme (5.1) and (5.9) to nonlinear scalar problems, we consider the nonlinear scalar equation  

,0)u(fu xt                                                                      (5-1) 

where the wave speed,  
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Here 
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2
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a
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t
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 . Unlike the constant coefficient case, 

2
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 . Then the numerical flux (4.9) 

takes the form  
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




                  (5.4) 

By considering all the possible combinations of the signs of 
2
1

2
1 jj

aanda


, the sufficient conditions on   

still have  the form similar to  (4.14) by replacing ( c)  by 
2
1j

a


.    

Remark: For two dimensions scalar equations and for systems of equations we use the same procedure 

presented in [8,11] 

 

6. NUMERICAL EXPERIMENTS  

In this section, we examine our scheme presented here and compare them with others schemes. In all figures 

the exact solution is shown by solid lines and the numerical solutionare shown  by symbols 

 

6.1 Scalar problems  

 

Consider the scalar equation  
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0t,x,0uu xt                                                    (6.1a) 

u(x,0) =g(x)                                                                                                     (6.1b) 

where  

















x20

2x1)]1x(8sin[

1x0,0

)x(g                                                  (6.2) 

The numerical solution is displayed with N=100 and c=0.9, at a long-time t=9. Fig 1 and 2 show the results 

computed by the leap frog scheme and the non TVD scheme (2.3) respectively. The results by the TVD third 

order scheme (4.2) and (4.9)) is shown in fig 3. By comparing the results with the third order Toro TVD 

scheme (see fig. 1-a in [11,8]we note the leap frog method introduce spurious oscillations while the non TVD 

scheme (2.3) reduces these oscillations. Also, Toro scheme is not satisfactory for long time while our TVD 

scheme gives very good approximations.  

 

6.2.  (Riemann problem)  

We assume the equation (5.1) with the initial condition   



 


elsewhere0

x1
)x(g

3
2

3
1

                                                                    (6.3) 

This equation has travelling discontinuity. We compute the numerical solution at t= 0.2, with N=180 and c = 

0.9. Figures 4,5,6 show the results computed by the leap frog, Amro and the TVD scheme (4.2) with (4.9) 

respectively. We notice that, the leap frog scheme introduces more oscillations as expected while the second 

method reduces them and the TVD third order scheme (4.2) with (4.9) gives the best approximation.  

    

 

6.3 Burgers’ equation 

Here we consider the numerical solution of the nonlinear Burgers’ equation  

,0
2

u
u

x

2

t 












                                                                                               (6.4a) 

with initial condition  















5.0x2

5.0x1

)0,x(u                                                                               (6.4b) 

This problem allow shock – at x=0.5,the jump produces an expansion fan with a sonic point . while the 

shock wave is created at x=0.5 and its speed equals to (0.5). the shock hits the rarefaction at time t=2/3 

and therefor the solution has a rarefaction only. the problem is solved numerically at t=0.4 i.e., before the 

collision of shock and rarefaction and at t=1 i.e. after the collision. The numerical solution are shown in 

figures 7 a and b, with 80 grid points, obtained with our TVD scheme at t=0.4 and t=1 respectively. We 

notice that results are very accurate. 
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Fig. 1. Solution of problem (6.1,2)  using Leap Frog 

 

 

. Fig. 2. Solution of problem (6.1,2) using Non-TVD. 

 

 

Fig. 3. Solution of the problem (6.1,2)  using TVD. 

 

Fig. 4. Solution of (Riemann problem) using Leap frog. 
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Fig. 5. Solution of (Riemann problem) using Amro. 

 

Fig. 6. Solution of (Riemann problem) using TVD. 

 

  

Fig.7a. Solution of problem(6.4) at t=0.4 Fig.7b. Solution of (6.4) at t=1. 

 

 

Fig. 8. Solution of Lax problem at t= 1.3 with 200 cells. 
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Fig. 9. Solution of the double Mach reflection problem on mesh of 960 x 240. 

 

6.4. One dimensional system of Euler equations  

We now apply our new scheme to the one-dimensional system Euler equations of gas dynamics 

,0)U(FU xt                                                          (6.5) 

where 
T2T ))PE(u,Pu,u()U(Fand)E,u,(U  . Where   is the density, u is the 

velocity, P is the pressure, 
)1(

P
u

2

1
E 2


  is the total energy and   is the ratio of specific heats, taken 

as 1.4 here.  

6.4.1 Lax problem 

We solve the Lax problem for Euler equations (5.5) and initial data consists of two states, left (L) and right 

(R) 

)571.0,0.0,5.0(=)P,u,ρ(and)528.3,698.0,445.0(=)P,u,ρ( RRRLLL                    (6.6) 

separated by a discontinuity at x = 0.0. The computational domain is taken as the interval [-5,5]. Fig. 8 shows 

the results computed by our TVD scheme at t= 1.3 with 200 cells. Comparing with the results obtained with 

CWENO scheme (Shi J. and Toro E.F., (1996) which generated non-physical oscillations near 

discontinuities, especially near contact discontinuity while the results obtained by our scheme are oscillations 

free and is more accurate.   

6.5 Extension to two dimensional problems  

 Our scheme can be applied to multidimensional problems. As an example, we consider the two 

dimensional, Euler equations   

              
0)]U(G[)]U(F[U yxt                                                                              (6.7)  

where 

T2T2T ))EP(v,vP,uv,v()U(G,))EP(u,uv,uP,u()U(F,)E,v,u,(U 
 

 

6.5.1 Double Mach reflection problem 
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This equation for this problem is the two-dimensional Euler equations (6.6) presented in[9]. Fig. 9 shows the 

computed density by our TVD scheme with 240960  cells. We note that the scheme   produces the flow 

pattern generally accepted in the present literature[9]  as correct. All discontinuities are well resolved and 

correctly positioned. 

 

7. CONCLUSIONS 

In this paper, we introduce a third order TVD finite difference scheme for solving conservation laws.the 

advantages of  are: simplicity, high odder accuracy and has the minimum order of dissipation. Many 

numerical experiments, one- and two-dimensional scalar and system cases are considered and the proposed 

scheme exhibits excellent performances in all cases.  

Applications of the scheme to one and two dimensions for scalar equations and nonlinear systems  give 

results that compare very well with those obtained by existing high resolution methods.  
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