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ABSTRACT

Granitic rocks represent a large portion of the Arabian-Nubian Shield (ANS) exposures in the North
Eastern Desert (NED). The timing of the magmatic events plays a major role in illustrating the ANS
development. In order to evaluate the ANS, it is important to understand their geochronological order.
Therefore, we studied calc-alkaline and alkaline granitic samples from Wadi Abu Abid, Gabal Um Anab
area, North Eastern Desert, Egypt, to chronologically evaluate the ANS magmatic process in the studied
region. The results show ages of the syn-collisional compressional magmatic event for all the analyzed
samples. The resulting ages extended from 755 + 16 Ma to 667 + 15 Ma, which represents some conflicts
with the traditional classification of the granitoids as being either Older syn-collisional calc-alkaline
granitoids or Younger post-collisional alkaline granitic rocks. Xenocrysts with pre-ANS ages noted in
five zircon grains in two samples, given ages of 2006 + 85 Ma, 1887 + 84 Ma, 1616 + 73 Ma, 1228 + 73
Ma, and 1227 + 70 Ma, which suggest a local rework of an older magmatic source.

Keywords: Older granites, North Eastern Desert, magmatic events, Zircon U-Pb dating, Arabian—Nubian Shield.

1. INTRODUCTION

Granitoids are the most common rocks in the Egyptian basement outcrops in the eastern desert and
Sinai (e.g., [1], [2]). Nearly half of this exposed area (100,000 square kilometers) is represented by
granitic rocks (e.g., [3], [4], [S], [6], [7]). These exposed basements are part of the large Neoproterozoic
juvenile tract known as the Arabian-Nubian Shield (ANS) (e.g., [8], [9], [10]), which evolved along three
major tectono-magmatic stages known as: (a) the accretion stage of the island arcs and micro-continents
(ca. 900 — 800 Ma) (e.g., [11], [12], [13], [14]), (b) the syn-collision stage (ca. 750— 630 Ma) (e.g., [8],
[9], [11], [13]), (c) the post-collision stage (ca. 630 — 550 540 Ma) (e.g., [7], [10], [11], [15]). The
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Egyptian ANS represents the northern, less metamorphosed extent of the East African Orogeny (EAQO),
which activated between ca. 900 Ma and 650 Ma (e.g., [8], [9]). The Eastern Desert is tectonically
dissected to three parts North, Center, and South Eastern Desert (NED, CED, and SED) each of which has
it’s own distinctive feature [16]. The NED (which our the main focus) is characterized by the higher
Younger Granites ratio than the Older granite unite, that makes it more similar to Sinai in addition to their

lack of volcanic activities (e.g., [17]).

The granitoid outcrops in Egypt are traditionally classified into the Older Granites (OG; 800 — 630 Ma),
that is characterized by being I-type, syn-collision, and syn-tectonic granites, and the Younger Granites

(YG; 630-540 Ma) which is characterized by being A-type, post-collision, and post-tectonic granites
(e.g., [6], [39], [1], [2], [16]).

The two granitic suites coexist in the NED (e.g., [4], [18], [19], [20], [21], [22], [22]), with a controversy
between the traditional granitic rock classification and the geochronological way. The traditional
classification of the granitic rocks that based on the apparent geochemical composition could give a

younger age and vice versa in the Younger Granites (e.g., [23]).

With limited geochronological studies on the NED granitoids, this study aims to provide information on
the magmatic evolution of the ANS in the NED and also an insight into its constructing history using
zircon U-Pb geochronological data provided by the laser ablation—inductively coupled plasma—mass
spectrometry (LA-ICP-MS) analytical technique for six granitic samples (Table 1), those samples were
collected from Wadi Abu Abid area (Fig. 2).
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Fig. 1. Location map for the northern ANS in Egypt. Terms GoS (Gulf of Suze) and GoA (Gulf of
Agqaba), the dash red line separates the NED (North Eastern Desert) from the CED (Center Eastern
Desert) after Stern & Hedge (1985).
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Fig. 2. Location map for analyzed samples along Wadi Abu Abid (the solid black line in Fig. 1),
showing the zircon U-Pb Concordia age of the examined samples with 26 error ranges. Sample number
are 1,2,3,4,5, and 6 are the same sample presented in Table 1.

Table 1. The analyzed granitoid samples.

Sample Location Elev. Th/U Rock Type Rock unites Concordant
traditional
Lat. Long. classification Age +2¢6
(Ma) (Ma)
Syn-orogenic
WAA2  26°51'50.06"N  33°36'10.21"E 879  0.454 Granodiorite Older Granite 764 18
WAA3 26°57'25.04"N  33°3229.95"E 648 0.701 Monzogranite Younger Granite 755 16
WAAI1 26°52'28.59"N  33°33'53.78"E 915 0.599 Monzogranite Younger Granite 741 17
WAAS 26°58'20.45"N  33°34'43.52"E 566 0.435 Monzogranite Younger Granite 701 16
WAA4  26°59'54.29"N  33°34'10.37"E 512 0.394  Alkali-feldspar granite ~ Younger Granite 667 15
WAA6  26°57'57.64"N 33°35'6.29"E 595 - Monzogranite Younger Granite - -

Elev.: Elevation in meters.
Lat.: Latitude in degrees, minutes, seconds.
Long.: longitude in degrees, minutes, seconds.

2. GEOLOGIC SETTING

Wadi Abu Abid area represents the NED basement rocks, which, in turn, falls in the northern part of
the ANS (Fig. 1). Compared with CED and SED, the NED area basements are mainly noted by less
deformation rare volcanic activities [13], and nearly no Banded Iron Formation (BIF) (e.g., [24], [25],
[13]). The NED resembles the Sinai basements by abundant granitoid outcrops and rare volcanic
exposures (e.g., [6], [7], [23]). Based on the ANS evolutionary events, the basement outcrops can be
generally grouped as : (a) Pre-collision (ca. 820-750 Ma) rocks of mainly highly deformed to green schist
facies, graded metavolcanics, metasediments, and granitoids with island arcs affinities (e.g., [11], [12],
[26], [27], [28]). (b) Syn-collision (ca. 750-630 Ma) less deformed granitoids compared to the Pre-
collisional type [16], [18], [19], [29]. (c) Post-collision (ca. 630-560 Ma) rocks represented mainly by
extensional intraplate undeformed granitoids [30], [31], [32]. Dyke swarms mainly started during the last
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phase of the post-collision stage (ca. 590-550 Ma) [26], marking the continuous extension regime after
the termination of EAO [15].

Geochemically, Farahat et al., [4] studied two areas above and below the study area geochemically.
The El Bula area exposures (in the south) were found to be dominated by calc-alkaline metaluminous to
mildly peraluminous I-type tonalitic and granodioritic rocks. These granitoids are suggested to be of
island-arc rocks of the pre-collision stage. They originated from either high-degree partial melting
(~40%) of a mafic deep crustal source (amphibolitic batholith) or fractional crystallization evolution
compared with the post-collision mantle-derived magmatism recorded in the NED (e.g., [22]). While the
Loman area (in the north) is dominated by a mid-alkaline to metaluminous A-type alkali-granite suite of
the post-orogenic phase. The source of this magma is recommended to be a partial melting of a tonalitic
source in the middle crust followed by fractional crystallization during the post-collisional extensional
stage.

Chronologically, Eliwa et al., [33] studied the Dara area (northeast of the study area) in the NED,
where the granitoids represented by trondhjemite, granodiorite, biotite-hornblende granite, and alkali-
feldspar granites with a U-Pb age (Ma) of 741 +2.9,720+7, 608 = 2.9, and 600 = 3, respectively.
Mansour et al., [23] conclude the older granites ages of 758 + 5 Ma reaches to 653 + 7 Ma, which
represented by both calc-alkaline and alkaline granitic rocks.

Tectonically, the area may be affected by post-crystallization different regional tectonic events,
supported by the zircon and apatite fission-track data (Thermotectonic analysis) from the G. Loman area
granites [34]; In the northern border of the study area, as three tectonic events are recorded (Hercynian
tectonic activity, Gondwana disintegration, and the Red Sea/Suez rift System), the same events are
recorded in several places in the Eastern Desert and Sinai ([35], [36], [37], [38], [39], [40], [41], [42],
[43]). Trace minerals chemistry of zircon, far south of the study area, suggests several stages of granitic
rocks formation as well [44].

The shortage in geochronological studies in the ANS, especially in the NED, induced a gap between
the geochemical and geochronological studies of the rock units and created a difficulty in conducting a
tectonic evolution model for the ANS. Therefore, we conduct this geochronological study using the
zircon U-Pb technique on samples from the OG rocks in the Wadi Abu Abid area as a representative of
the basement outcropping of the northern ANS in the NED. These were plotted on the IUGS quartz (Q)—
alkali feldspar (A)—plagioclase (P) diagram for plutonic rocks, in which the samples were plotted on the
corresponding fields based on the apparent QAP percentage in hand specimens (Fig. 3), four samples fall
in the monzogranitic field, one in the alkali-feldspar granite zone, and the last one in the granodioritic
area.
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Fig. 3. IUGS quartz—alkali feldspar—plagioclase diagram in which the analyzed granitic samples plotted on.
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These six granite samples can be traditionally categorized into two groups, Older and Younger
granites, supported by many workers on the Egyptian granites (e.g., [6], [21], [45]).

2. METHODOLOGY

The collected granitic samples were prepared for the geochronological analysis through a set of steps:
(1) The granitic samples (average weight 2-3 kg) were crushed using a geological hammer, and then a jaw
crusher was used to reach a size ranging from 2 mm to mud size (< 0.063). (2) A sieving method was
applied to remove the bigger and smaller size grains from the sand-sized grains. These steps were
performed at the Geology Department, Port Said University, Port Said, Egypt. (3) Zircon crystals were
separated using the heavy liquid separation methods [26], then through hand picking. (4) The U/Pb and
Th/Pb isotopic ratios were measured using the LA-ICP-MS system at Kanazawa University, Japan. Table
2 gives brief information about specifications and operating conditions of the LA-ICP-MS setup that was
applied in Tamura et al. [46]. .

Table 2. Specifications and operating conditions of the LA-ICP-MS.

ICP-MS
Model Agilent 7850
Forward power 1200 W
Plasma gas flow 15 L min"'
Carrier gas flow 1.10 L min ' (Ar), 0.3 L min ' (He)
Interface Ni sampler/Ni skimmer
Laser
Model UP-213 (New Wave Research)
Wavelength 213 nm (Nd-YAG)
Spot size 25 pm
Repetition rate 5 Hz
Energy density 7J cm” (Attenuater: 50%—60%)
Warming up 10 sec

To ensure the validity of our measurements, zircon references with verified ages were frequently
examined. Our measurements for the Zircon references ages are 28.8 + 0.3, 612 + 2, 1099 + 2, 341 £ 2
Ma for Fish Canyon tuff, GJ-1, AS-3, and Plésovice, respectively. These show an agreement with the
previously reported reference ages of 28.4, 609, 1099, and 337.1 Ma [47], [48], [49], [50].

Throughout the analytical procedures, LA-ICP-MS signals; which used many works (e.g., [23], [26],
[29], [32], [37], [S1])were continuously inspected to ensure their stability and consistency and free from
inclusions, core-rim compositional variation, zones commonly enriched in Pb, or evidence of signal
fractionation. Following background correction, mean isotopic intensities were calculated to derive the
isotopic ratios [52]. The 204Pb (and 204Hg) were repeatedly below the detection limit as shown in Table
3, therfore, the reported ages are not corrected for 204Pb. The reported concordant ages, along with their
26 uncertainties that are presented in the text and figures, are calculated using the IsoplotR [53], as it used
in many researches for the same purpose (e.g., [23], [29], [32], [37]).
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3. RESULTS

Zircon U-Pb data were acquired from 53 grains separated from 5 granitic samples (sample WAA6
gives no results). Grains with detectable levels of common lead, cracks, or inclusions were removed from
sample age calculations and discussions. Grains with concordance less than 90%, cracks, or inclusions
were removed from the calculation processes, giving the concordant ***Pb/**U age of the grains in each
of the studied sample, so that from a total of 53 zircon U-Pb data sample 47 grains give more age

credibility to achieve a more accurate crystallization ages.

For WAAL1 sample (Fig. 2), 11 zircon grains were analyzed (Table 3), showing different transparency
degrees from yellow to brown colors. They are mainly euhedral crystals, with a length/width average ratio
of 2:1. Most of them had minor inclusions, with nearly 65% of them showing prominent cracks. The
isotopic ratios Th/U range from 0.29 to 1.44, with 0.62 as an average value. D7 grain were removed from
the age determination as it gives a younger age of 517 = 39 Ma (Table 3), and in contrast grains D9, E1,
and I3 give older pre-Pan-African ages of 1228 + 73 Ma, 1227 + 73 Ma, and 1887 + 80 Ma in respect, so
they were also removed from the age determination. The 7 remaining grains display a single age cluster,
giving an age of 741 £ 17 Ma (Fig. 4), which represents the age of crystallization of the studied

monzogranite rock sample (Table 1; Fig. 4).

For WAA2 sample (Fig. 2), a total of 11 grains were analyzed (Table 3), with a transparent to yellow
color and mainly euhedral crystal faces, with a length/width average ratio of approximately 3:1. The
majority of grains have small inclusions, with nearly 70% of them show prominent cracks. Th/U ratios
range between 0.06 to 0.96, with 0.44 as an average value. Grains G7 and J2 give discordant older ages of
2006 + 56 and 1616 £ 73, respectively, so they were removed from the sample age determination. The 9
remaining grains display a mean age forming a single aggregate, giving an age of 764 + 18 Ma (Fig. 4),

which indicates the age of crystallization of the studied granodiorite rock sample (Fig. 4; Table 1).

For WAA3 sample (Fig. 2), 11 zircon grains were analyzed (Table 3), showing different transparency
degrees from yellow to brown colors. They are mainly euhedral crystals, with a length/width average ratio
of 2:1. Most of them had inclusions, and nearly 65% of them show prominent cracks. The Th/U ratios
vary between 0.04 and 2.26, giving an average value of 0.7. All 11 grains show a uniform clustering on
the Concordia, providing a concordant age of 755 + 16 Ma (Fig. 4), the 755 = 16 Ma age reflecting the

formation age of the analyzed monzogranite sample (Table 1; Fig. 4).

For WAA4 sample (Fig. 2), a total of 10 grains were analyzed (Table 3), showing a range of
transparency variation from transparent with frequent yellow discoloration. Most zircons are primary
euhedral crystals, with a 3:1 is the average length/width ratio. The majority of grains contain small
inclusions, and approximately 60% of them show prominent cracks. The isotopic ratios Th/U range from

0.05 to 1.02, with 0.39 as an average value. All analyzed zircon grains show a uniform aggregation giving
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a Concordia age of 667 = 15 Ma (Fig. 4), which is interpreted as the formation age of the alkali-feldspar
granite (Table 1; Fig. 4). the same age shown as a reworked zircon grain age in the Fawakhir alkali-

feldspar granite sample with a Concordia age 564.3 + 7.8 Ma south of the current study area [29].

For WAAS sample (Fig. 2), 10 zircon grains were analyzed (Table 3), showing different transparency
degrees from yellow to brown colors. Crystals are mainly euhedral, with a length/width average ratio of
2:1. Most of the zircons had inclusions, with nearly 65% of them showing prominent cracks. The Th/U
ratios vary between 0.31 to 0.58, giving an average value of 0.43. All analyzed zircon grains allocated in a
single age population, giving a mean age of 701 = 16 (Fig. 4), which represents the age of the
monzogranite studied rock sample crystallization age (Table 1; Fig. 4).

Table 4. Summary of Wadi Abu Abid samples Concordia age with Mean Square of Weighted Deviation
(MSWD), and number of zircon grains (n).

Num. Code Zircon age MSWD n
1 WAAO1 741 + 17 Ma 54 11
2 WAAQ02 764 + 18 Ma 35 11
3 WAAOQ03 755+ 16 Ma 3 11
4 WAA04 667 + 15 Ma 1.1 10
5 WAAOQ5 701+ 16 Ma 2.5 10
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Fig. 4. Concordia diagrams and weighted mean ages distributions for all zircon grains, plotted using
IsopltR [53].
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5. DISCUSSION

The majority of the analyzed zircons give an average Th/U isotopic value ranging from 0.05 to 2.26,
showing an average value of 0.51 (Table 3). On the basis of the various analyses of magmatic and
metamorphic zircons [54], [55]. That wide ratio reflects a magmatic source for the zircon crystal, with the

exception of five zircon grains. These grains show a lower Th/U isotopic value than 0.1.

WAA2, WAA3, WAA1, WAAS, and WAA4 samples show a U-Pb Concordia age of 764 = 18 Ma, 755
+ 16 Ma, 741 £ 17 Ma, 701 +£ 16 Ma, and 667 + 15 Ma, respectively (Table 1; Fig. 2) (Cryogenian
Period), which are all located within the Syn-collisional magmatic [16], [18], [19], [29].

Xenocrysts with pre-EAO ages have been yielded by our samples; grains D9, E1, and I3 in sample
WAAL; and grains G7 and J2 in sample WAA?2 yielded ages of 1228 + 73 Ma, 1227 + 70 Ma, 1887 + 84
Ma, 2006 + 85 Ma, and 1616 & 73 Ma, respectively (Fig. 5; Table 3). These ages indicate a probable Pre-
Neoproterozoic material engagement that infected the magma generation or emplacement, reflecting
inheritance from older crustal basement (e.g., [26], [56], [57]). The presence of these pre-EAO grains
raises a question about the possibility of the former existence of pre-Pan-African crust, which needs a
more detailed and vast investigation along the rock units forming the ANS crust as noted in other similar

approaches in the Eastern Desert (e.g., [32], [29],[23], [51)).

A zircon grain gave a younger age that is not compatible with the sample’s population age (517 + 39
Ma, D7 grain in sample WAAI1) (Fig. 5). This age either indicates a new growth during magmatic
differentiation or overgrowth during metamorphism, and taking in consider the Th/U ratio (0.43), which
indicates a magmatic source that is supported by its separated from a granitic sample (Table 1). This
younger grain might indicate a further extension of post-collisional magmatic activity [26]. An

alternative possibility is being an effect of the later dyke intrusion that affected the ANS [26].

The recorded Concordia ages of Syn-orogenic granitic show a general increase moving from SED to
the study area in the NED, as diorite (OG) and syenite (YG) in Marsa Alam-Idfu transect (699.1 £ 4.3 Ma
- 6459 £ 1.7 Ma) [32], Older granite (729 + 10 Ma) clastic part of Hammamat group along the Qift-
Quseir transect [29], the granite (YG) and diorite (OG) of Safaga —Qena transect (758 + 5 Ma - 653 £ 7
Ma) [23]. This increase of the Syn-orogenic granite recorded Concordia ages is continuing moving north
of the study area (NED), as Mus trondhjemite and granodiorite (OG) of G. Dara area (741 + 2.9 Ma &
720 = 7 Ma) [33]. All of the previously mentioned Concordia ages used the LA-ICP-MS method, except
for G. Dara area used SIMS (Secondary Ion Mass Spectrometer) zircon U-Pb dating.
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Fig. 5. Distribution chart shows the analyzed single zircon U-Pb concordant ages from all grains.

5. CONCLUSION

1. The NED basement outcrops at the studied region show one distinct magmatic event, the syn-
collisional phase, characterized by the coexistence of “Gray, Older” calc-alkaline and ‘“Red,
Younger” alkaline granitic suites, positioned between 764 = 18 Ma and 667 + 15 Ma.

2. The traditional way of “Older” and “Younger” granitoids classification according to their apparent
mineralogical composition and color variations gives misleading interpretations on the magmatic and
tectonic sequences.

3. The presence of xenocryst zircon grains (2006 + 85 Ma to 1227 + 70 Ma) in the analyzed grains
raises questions about the potential presence of craton basement composition, although rocks with
pre-Neoproterozoic ages were absent in the study area.

4. The presence of zircon grain with an age of 517 + 39 Ma indicates a possible continuity of the post-
collisional activity in the ANS till this time.
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