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ABSTRACT 

This study introduces a robust and highly accurate numerical scheme for the solution of two-

dimensional elliptic partial differential equations subject to Dirichlet boundary conditions. The proposed 

method is based on the Nonstandard Finite Difference technique, which is designed to achieve improved 

accuracy and stability compared to the classical Standard Finite Difference approach. To solve the 

resulting large, sparse linear systems, we employ two iterative solvers: the Bi-Conjugate Gradient 

Stabilized method and a Multigrid method. Within the multigrid framework, the Generalized Minimal 

Residual algorithm is utilized as a smoothing strategy to enhance convergence behavior. A 

comprehensive set of numerical experiments is carried out to assess and compare the performance of 

these approaches in terms of convergence rate, computational time, and number of iterations. The results, 

obtained for a range of grid resolutions and problem configurations, demonstrate the superior 

performance and efficiency of the proposed NSFD-based scheme, particularly on finer grids, confirming 

its effectiveness and reliability for solving elliptic problems. 

 

 

Keywords: Iterative solvers, elliptic PDEs, Dirichlet boundary conditions; Nonstandard Finite Difference; Finite 

difference method; Multigrid method; Generalized minimal residual method; Biconjugate gradient stabilized 

method. 

 

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  
 

1. INTRODUCTION 
 

The Poisson equation is a fundamental second-order elliptic partial differential equation (PDE) that 

appears often in physics and engineering problems. It is given by: 

                                                                  (   )   (   )                                                               (1)  
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where    denotes the Laplacian operator, and   is the unknown scalar function and   is source 

function.  

The Laplace equation a special case of the Poisson equation (where the right-hand side is zero), which 

implies that its solutions are infinitely differentiable in regions where boundary conditions are well-

defined. Due to its wide applications, studying the behavior of its solutions, especially in complex 

domains or under irregular boundary conditions, is of great interest in modern computational mathematics 

[1-3]. 

In recent years, researchers have increasingly focused on expanding classical theories to more general 

settings—particularly when solving the Poisson equation in irregular or singular domains. For instance, 

the study in [4] looked at how solutions behave on bounded subanalytic manifolds, offering valuable 

insights that could be applied in fields like physics and geometry. Poisson’s equation plays a central role 

in applied mathematics and engineering, especially in problems involving steady-state heat conduction 

and temperature distribution. 

There has also been growing interest in studying key physical phenomena modeled by partial 

differential equations (PDEs), such as the heat and wave equations, which are commonly discussed in 

works like [5,6]. To solve these types of equations, researchers use a variety of mathematical and 

numerical techniques, as highlighted in [7]. Over time, many reliable methods have been developed for 

numerically solving PDEs under different conditions and domain complexities. 

One of the most widely known methods is the Finite Difference Method (FDM) , which involves 

discretizing the domain into grid points and approximating derivatives using finite difference formulas. 

It’s valued for its simplicity and is often used to solve problems in heat transfer, fluid flow, and 

electromagnetic analysis. Another powerful method is the Finite Element Method (FEM), which is built 

on variational principles and offers greater flexibility when dealing with complex geometries or boundary 

conditions. 

The Nonstandard Finite Difference (NSFD) method stands out because it's designed to preserve 

essential qualitative features of the original differential equations like positivity, stability, or boundedness 

that standard methods might overlook. Meanwhile, the Boundary Element Method (BEM) transforms 

PDE problems into boundary integral equations, which reduces the problem's dimensionality. This makes 

it especially useful for problems defined in infinite or semi-infinite domains, as demonstrated in [8–12]. 

 In particular, the Dirichlet boundary value problem for the Laplace equation involves determining a 

solution   within a domain  , where the boundary values of   are prescribed. A common example of this 

problem appears in heat conduction, where fixed temperatures are set along the boundary and the goal is 

to find the steady-state temperature inside the region. The solution to the Dirichlet problem in this context 

represents the equilibrium temperature profile within the domain, as in [13,14] Thus, solving the Dirichlet 

boundary value problem for the Laplace equation is important for understanding many steady-state 

physical systems. 

The FDM is one of the most commonly used numerical techniques for approximating solutions to 

PDEs. It is also considered one of the simplest and oldest methods for solving differential equations. It is 

based on discretizing the continuous domain into a grid and approximating derivatives by differences 

between function values at adjacent grid points. FDM has been widely used to solve various problems in 

physics and engineering, such as heat conduction, fluid dynamics, and electromagnetic field analysis.[15]. 

NSFD methods are recognized as effective alternatives to the FDM for solving a variety of mathematical 

models, including algebraic equations, biological systems, and chaotic models [61]. These methods are 

known for their improved stability and accuracy, especially when there are issues with standard methods. 

The NSFD approach was developed by Mickens [61,18] who proposed clear way for building 

numerical schemes that keep the key properties of the original differential equations. These methods 
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modify standard discretizations by incorporating nonlocal terms, using special denominator functions, or 

adjusting the mesh sizes to better capture the behavior of the continuous system. 

Researchers have successfully applied NSFD methods in various fields. For example, Moaddy, 

Momani, and Hashim applied NSFD to solve linear fractional partial differential equations in fluid 

mechanics [19]. In another study, Sweilam, Al-Mekhlafi, and Baleanu developed an NSFD scheme to 

solve complex-order fractional Burgers’ equations, demonstrating that the method could accurately 

preserve the physical behavior of the solution while achieving high numerical convergence [20]. 

The SFD and NSFD methods approximate the derivatives in the PDEs using finite difference operators 

[21], transforming the continuous Poisson equation into a large, sparse linear system. After discretization, 

the resulting linear system is solved using iterative solvers, which is especially efficient for large-scale 

problems where direct solvers become computationally expensive [22,23]. 

When equation (1) is discretized using FDM or NSFD methods it is generally converted into a linear 

system of the form: 

                                                                                                                                        (2) 

where         is the resulting coefficient matrix arising from the discretization process,        is 

the unknown solution vector representing the discrete values of the potential field, and      is the 

right-hand side vector. Efficiently solving such systems is essential, particularly when addressing large-

scale problems or complex geometries. Many effective methods have been developed to solve these 

systems, especially when the resulting matrices are ill-conditioned. One of the most important methods is 

Multigrid MG, which has shown strong performance in these cases.  

The MG-GMRES method combines MG and generalized minimal residual method (GMRES), with 

MG acting as the smoother to accelerate convergence. It efficiently addresses error components across 

multiple spatial scales, making it well-suited for large, complex problems [24]. MG methods depend on 

smoothers, such as Gauss-Seidel or Jacobi, to reduce high-frequency errors. However, when traditional 

smoothers become ineffective, GMRES-based smoothers provide enhanced robustness, particularly for 

ill-conditioned problems. However, GMRES smoothers, rather than traditional ones, can be more 

effective in these cases. 

On the other hand, Bi-Conjugate Gradient Stabilized (BiCGStab) is another well-regarded iterative 

method, especially known for its stability and effectiveness in solving nonsymmetric linear systems. 

Unlike traditional methods, BiCGStab is specifically designed to address ill-conditioned problems more 

efficiently, providing strong performance even when other methods face difficulties in converging [25]. 

By appropriately integrating these methods, more efficient solutions to challenging linear systems can be 

achieved, ensuring both stability and fast convergence. 

The Poisson equation is a fundamental mathematical model used in many fields, including heat 

transfer, fluid dynamics, and electrostatics. Because it’s not easy to solve this equation exactly, numerical 

methods are used to find approximate solutions. One widely used approach is the FDM, known for its 

simplicity and ease of implementation. However, standard methods like FDM may not always provide 

sufficient accuracy or stability, especially for complex problems or when using very fine grids. 

The main goal of this work is to enhance both the accuracy and efficiency of solving the Poisson 

equation. Traditional methods may fail to capture important features of the solution, especially on fine 

grids or near boundaries, and some iterative solvers suffer from slow or unstable convergence for large-

scale problems. To address these challenges, this study proposes a novel numerical approach that 

combines the NSFD scheme with two advanced solvers: BiCGStab and MG methods. Furthermore, the 

GMRES method is used as a smoother within the MG framework to improve convergence. The 

effectiveness of the proposed approach is evaluated on benchmark problems and compared with standard 

methods in terms of accuracy and computational efficiency. 

The key advantage of the proposed approach is its ability to deliver more accurate solutions with fewer 

iterations and lower computational cost. It performs well even for challenging problems and fine grid 
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resolutions, making it a practical and efficient tool for solving complex scientific and engineering 

problems. 
 

2. SFD Method 

 

The two-dimensional Poisson equation can be expressed as 

 

                                            {
   

   
 
   

   
  (   )    (   )       

 (   )   (   )    (   )       
                                                        (3) 

 

 Here,   refers to a square domain in the 2D plane,    denotes the boundary of that domain, 

 (   ) is the known boundary condition, and  (   ) represents the analytical solution of the problem. 

To numerically approximate the solution, the second derivatives with respect to   and   are 

discretized using central finite difference formulas. The second derivatives with respect to   and   are 

approximated using central differences as follows: 
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By inserting these expressions into the Poisson equation, we obtain the discrete approximation: 
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  (   ).                                        (6)  

 

Solving this equation for      yields the following weighted average formula: 

 

                         
 

 (
 

(  ) 
 

 

(  ) 
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(  ) 
  (   ))                                          (7) 

 

In this work, we adopt an SFD scheme over a uniform grid to investigate the numerical behavior of 

Poisson's equation (3). Assuming equal spacing in both coordinate directions, we let          . 

The grid spacing is determined by   
   

 
, where   and   denote the lower and upper bounds of the 

domain in both the  - and  -directions, respectively, and   is the number of subintervals along each axis.  

with the grid nodes defined as       ,         for             . 

This numerical formulation is widely used for solving elliptic partial differential equations and is 

discussed in more detail in [26]. 
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                             (a)                                                                   (b) 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. (a)The mesh points for the FDM grid, (b) Discrete grid points for            

    used in the discretization of   the Poisson equation red is unknown point and green is boundary 

condition. 

3. NSFD Method 

The NSFD method, developed by Ronald E. Mickens [27], is a numerical technique designed to 

enhance the accuracy and stability of traditional FDM. Unlike conventional approaches, NSFD 

formulates special difference equations that better preserve critical properties of the original differential 

equation, such as positivity, symmetry, and stability. When applied to Poisson's equation, the NSFD 

method transforms the equation into a linear algebraic system, maintaining the correct behavior of the 

solution, especially near boundaries or in complex geometries. 

To numerically approximate the solution of the Poisson equation, we apply an NSFD scheme 

following the approach proposed in [28]. This method constructs a discrete version of the Laplace 

operator using specially designed denominator functions, leading to a scheme that preserves the 

qualitative properties of the continuous model. 

Based on previous studies and guided by the general NSFD framework, equation (3) is discretized as 

follows: 

                                     
                   

  (  )
 
                   

  (  )
  (   )                                               (8) 

where: 

      represents the numerical approximation at the grid point (     ). 

   (  ) ,   (  )are nonstandard denominator functions satisfying: 

                                                      ( )   
   (  )                                                                (9)                          

Solving (8) for     yields: 

 

                           
 

 (
 

  (  )
 

 

  (  )
)
 (
             

  (  )
 
             

  (  )
  (   ))                                  (10) 

After applying both the SFD and NSFD schemes, the continuous Poisson equation is transformed into 

a linear algebraic system. This transformation enables the application of iterative solvers to obtain 

numerical approximations of the solution. In this study, particular attention is given to two prominent 

methods: the MG method and the BiCGStab method. 
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4. Multigrid (V-Cycle) with GMRES Smoother  

Iterative methods are essential for the numerical solution of general elliptic PDEs. In finite difference 

(FD) discretizations, a common trade-off exists: finer grids offer higher accuracy but result in slower 

convergence, while coarser grids lead to faster convergence, at the cost of reduced accuracy.   

A key challenge with traditional iterative solvers is their inefficiency in removing low-frequency error 

components, which tend to remain on finer grids. However, these smooth errors can be greatly reduced by 

transferring them to coarser grids a fundamental principle behind multigrid (MG) methods. 

This principle underlies MG methods, which are among the most efficient solvers for elliptic 

problems. MG techniques combine relaxation (smoothing) steps on fine grids with coarse-grid correction 

strategies, effectively accelerating convergence by addressing all frequency components of the error. The 

algorithm cycles through multiple grid levels, typically using a V-cycle, W-cycle, or Full Multigrid cycle, 

depending on the specific strategy. 

A critical component of the MG method is the smoother, which is responsible for effectively damping 

high-frequency errors. While classical choices include Gauss-Seidel or weighted Jacobi methods, in our 

case, we employ the GMRES method as the smoother due to its robustness and effectiveness, especially 

for more challenging or non-symmetric problems. 

The standard MG algorithm consists of the following key steps: 

1. Pre-smoothing: Apply a few iterations of an iterative method (in this case, GMRES) to damp 

high-frequency errors on the fine grid. 

2. Residual Computation: Compute the residual, which represents the discrepancy between the exact 

and current approximate solution. 

3. Restriction: Transfer (restrict) the residual to a coarser grid. 

4. Coarse Grid Correction: Solve the error equation on the coarse grid (either exactly or 

approximately). 

5. Prolongation (Interpolation): Transfer the coarse-grid correction back to the fine grid and update 

the fine-grid solution. 

6. Post-smoothing: Apply a few more iterations of GMRES to eliminate any high-frequency errors 

reintroduced by the interpolation. 

This process can be repeated recursively across multiple grid levels, forming the basis of multilevel 

solvers that are both accurate and efficient. 

Algorithm (1): MG solver 

Input: Matrix        initial vector     , right-hand side  

    , error tolerance  , number of levels    numbers of  

pre/post-relaxations steps      ,       

Output: Solution     to the linear system         
1: Function Multigrid(                     ):  

2: Build prolongation matrices                

3:      

4: For           do  

         (    )
                      %% Build level   matrix 

5: end  

6: repeat 

7:       (     )  
8: until                        %% Convergence test 

9: return    
10: End Function 
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Algorithm (2): MG (V-cycle)  

Input: Current iterate     , right-hand side     , level   
Output: New iterate       
1: Function    (     )   
2:    if       then  

3:                (             ) %%Pre-relaxation  

4:            (    
  (          )     )   %%Recursive call  

5:              (                       ))  %%Post-relaxation 

6:    else 

7:       solve       using a direct solver 

8:    end 

9:    return   

10: End Function 

 

5. The BiCGStab Method 

The BiCGStab algorithm is a Krylov subspace iterative method specifically designed for solving 

nonsymmetric and non-Hermitian linear systems. It was developed as an enhancement of the Conjugate 

Gradient Squared (CGS) algorithm introduced by Sonneveld [29]. The CGS algorithm itself originates 

from the Biconjugate Gradient (BiCG) method, which is based on the Lanczos biorthogonalization 

process [30]. 

All these algorithms fall under the broader category of Krylov subspace methods, which iteratively 

construct approximate solutions by projecting the original problem onto a sequence of subspaces 

generated by the coefficient matrix   and the initial residual vector. 

The BiCG method operates by maintaining two sequences of vectors that are biorthogonal to each 

other through coupled recurrence relations. Although BiCG is effective in many cases, it often suffers 

from irregular convergence and numerical instabilities. The CGS algorithm attempts to address this by 

squaring the BiCG recurrence, which can improve convergence smoothness, but also tends to amplify 

round-off errors and may introduce significant oscillations in the residual norm. 

To mitigate these issues, the BiCGStab algorithm introduces a stabilization mechanism that combines 

the robustness of BiCG with smoother and more reliable convergence. It modifies the CGS formulation 

by incorporating additional scalar parameters that stabilize the residuals, resulting in improved numerical 

behavior and faster convergence in many practical applications. 
 

In the following, we present the detailed algorithmic steps of the BiCGStab method: 

Algorithm 3: BiCGStab. 

1:         

2:           ,         

3: for              

4:               
      

5:           (
  

    
) (

    

    
) 

6:                   (             ) 

7:                

8:           
  

  
    

 

9:                     

10:             

11:         
  
   

  
   

  

12:                          

13:                     
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14:    If      is accurate enough the 

15:       STOP 

16:    end if  

17: end for 

6. Numerical Experiment 
 

To evaluate the accuracy of the proposed method, we examine two problems governed by Poisson's 

equation. These problems are discretized using SFDM, and the resulting linear systems are first solved 

using the MG-GMRES method. Then, we apply NSFD method, solving the corresponding linear systems 

with both Bi-CGSTAB and MG-GMRES. We present visual representations of the computed solutions 

along with their associated error distributions. For numerical comparison, key performance metrics such 

as iteration count (iter) and CPU time (in seconds) are reported. A uniform convergence tolerance of 

       is enforced across different grid resolutions, denoted by N, (COND) also refers to the condition 

number. The precision of the computed solutions is assessed using the    and    error norms, which 

quantify deviations from the exact analytical solutions. This framework allows for a thorough evaluation 

of each method's capability to accurately capture the behavior of the underlying physical system. The 

definitions of the    and L∞ norms of the solution are as follows: 

                                  ‖ 
        ‖  *∑ |  

        
 |
  

   +

 

 
                                                     (13) 

                                 ‖ 
        ‖      |  

        
 | .                                                        (14) 

Example1: 

                         
   

   
 
   

   
                                                                      (15) 

And the boundary conditions are: 

 (   )      ( )  (   )                                                                                                                              

                                                           (   )     (   )       ( )    ( )                                                (16) 

The exact solution is given by 

                                                     (   )      ( )    ( )                                                                    (17) 

 In the NSFD scheme, the denominator functions and the term   and    are defined as follows: 

                                                         
 (

  

 
)         

 (
  

 
)                                                              (  ) 

Substituting the denominator functions   and   in (10) yields: 

 

                                  
 

 

     (
  

 
)(             )    

 (
  

 
)(             )

     (
  

 
)     (

  

 
) 

                                              (19) 

 

TABLE 1.  Computational results for Example 1. 

N SFD-MG NSFD-MG COND 

    L∞ N. 

iter 

CPU    L∞ N. 

iter 

CPU  

16                       2 0.067                         2 0.053 168 

32                       4 0.096                         4 0.072 640 

64                       5 0.254                        5 0.166 2488 

128                       5 0.771                         6 0.549 9806 

256                       6 1.736                         6 1.069 38,926 

512                       6 10                         7 16.6        
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Table 1 shows that the NSFD-MG method achieves much lower error norms than SFD-MG, especially on 

finer grids, reaching near machine precision. Both methods require a small, nearly constant number of 

iterations, but NSFD-MG provides higher accuracy with slightly more CPU time at large grid sizes. 
 

TABLE 2.  Computational results for Example 1. 

 

Table 2 compares NSFD-MG with NSFD-BiCGStab. NSFD-MG converges much faster, needing far 

fewer iterations (e.g., 7 vs. 1291 at N = 512) with better accuracy. This shows the benefit of using the 

multigrid method with a GMRES smoother. 

 

                             (a)                                                                   (b) 
 

 

 

 
 

 

 

 

 

 

Fig 3. (a) Numerical solutions using MG-GMRES for N=44. (b) Corresponding exact solution. The 

close visual agreement between both solutions indicates that the proposed method accurately captures the 

true behavior of the problem. 

 

 
 

 

 

 

 

 

 

 

 

 
Fig 4. Shows the error surface at      using MG-GMRES, illustrating a smooth and very small 

numerical error across the domain, indicating high accuracy of the numerical method. 

 

 

N NSFD-MG NSFD-BicgStab COND 

    L∞ N. 

iter 

CPU    L∞ N. 

iter 

CPU  

16                         2 0.053                       48 0.061 168 

32                         4 0.072                         85 0.08 640 

64                        5 0.166                         162 0.13 2488 

128                         6 0.549                         323 0.18 9806 

256                         6 1.069                         617 1.09 38,926 

512                         7 16.6                        1291 17.7   
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. 

 

 

 

 

 

 

 

 

 

Fig 5. Comparison of absolute error vs. iteration showing faster convergence of the MG method 

compared to BiCGStab at      . The MG method reaches a much lower error level in significantly 

fewer iterations than BiCGStab, clearly demonstrating its faster convergence and higher efficiency in 

solving the system. 

                               (a)                                                                                     (b) 

 
.. 

 

 

 

 

 

 

 

Fig 6. Comparison of NSFD, SFD, and exact solution at   
 

 
; (a) full domain, (b) zoomed-in view 

showing accuracy differences. 

Example2: 

                                
   

   
 
   

   
                                                                               (  ) 

And the boundary conditions are: 

 (   )     (   )   , 

                                                  (   )        (   )      ( )    ( )                                                       (  ) 

The exact solution is given by 

                                                                 (   )      ( )    ( )                                                                  (  ) 

In this example we follow the same technique of the above example and using the denominator functions 

   and    in (19). 
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TABLE 3.  Computational results for Example 2. 

 
Table 3 presents the computational results for Example 2 using SFD-MG and NSFD-MG methods. The 

NSFD-MG method consistently produces much smaller errors than SFD-MG across all grid sizes Both 

methods require a similar number of iterations, but NSFD-MG achieves significantly higher accuracy 

with lower CPU time, especially on coarse grids. 

TABLE 4.  Computational results for Example 2 

 

              
Table 4 compares the performance of NSFD-MG and NSFD-BiCGStab for Example 2. NSFD-MG 

achieves significantly better accuracy with much fewer iterations across all grid sizes. For example, at 

     , NSFD-MG converges in 7 iterations with an    error of             , while NSFD-

BiCGStab requires 789 iterations and produces a larger error. This confirms that the multigrid method 

with a GMRES smoother offers faster convergence and higher precision compared to BiCGStab. 

 

                                         (a)                                                                       (b) 
 

 

 

 

 

 

 

 

 

 

 
Fig. 7. (a) Approximate solution obtained using MG-GMRES for     . (b) The corresponding 

exact solution for comparison. 
 

 

 

 

N SFD-MG NSFD-MG COND 

    L∞ N. 

iter 

CPU    L∞ N. 

iter 

CPU  

16                       3 0.041                         3 0.029 168 

32                       5 0.128                        5 0.037 640 

64                      6 0.245                        6 0.107 2488 

128                       7 0.879                         7 0.32 9806 

256                       7 1.526                         7 1.01 38,926 

512 3.355                 7 5.49                        7 8.14        

N NSFD-MG NSFD-BicgStab COND 

    L∞ N. 

iter 

CPU    L∞ N 

.iter 

CPU  

16                         3 0.029                       22 0.037 168 

32                        5 0.037                        48 0.046 640 

64                        6 0.107                        95 0.038 2488 

128                        7 0.32                        189 0.112 9806 

256                        7 1.01                       384 1.32 38,926 

512                        7 8.14                        789 12.01   
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Fig. 8. Error surface for      using MG-GMRES, demonstrating a smooth distribution of very 

small errors across the domain, highlighting the high accuracy of the method. 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.9. Absolute error versus iteration for      , illustrating the faster convergence of the MG 

method in comparison to BiCGStab. 

 

                                    (a)                                                                       (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.10. A comparison of the NSFD, SFD, and exact solutions at   
 

 
: (a) entire domain, (b) close-

up view highlighting the accuracy differences. 
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Example 3 
Consider the following two-dimensional Poisson equation 

                                             
   

   
 
   

   
  (   )                                                                      (23) 

                              (   )          (  )    (  )                                                      (24) 

 
with boundary conditions 

 (   )     (  )   (   )       (  ) 
                                          (   )     (   )                                                           (25) 

and the exact solution is given by 

 

                                        (   )      (  )    (  )                                                     (26) 

 

In the NSFD scheme, the denominator functions and the term   and    are defined as follows: 

                                       
(  ) 

    (  ) 
     

(  ) 

    (  ) 
                                                                   (27) 

 

TABLE 5.  Computational results for Example 3 at        . 

 

In the previous table, the NSFD-MG method consistently yields lower    and L∞ errors compared to 

SFD-MG across all grid sizes. For instance, at       , NSFD-MG achieves an    error of       

    , significantly better than SFD-MG’s           . Both methods require the same number of 

iterations, but NSFD-MG provides much higher accuracy with comparable CPU time. This demonstrates 

the effectiveness of the NSFD scheme at       , especially in reducing error as the grid is refined. 

 

TABLE 6.  Computational results for Example 3 at        . 

 

Table 6 compares NSFD-MG and NSFD-BiCGStab for Example 3 at       . The NSFD-MG method 

achieves lower error values across all grid sizes with significantly fewer iterations. For instance, at 

     , NSFD-MG reaches the desired accuracy in only 6 iterations, while BiCGStab requires 398. 

CPU times are also lower or comparable, especially for larger grids. These results confirm that multigrid 

with a GMRES smoother remains more efficient and accurate than BiCGStab, even when the NSFD 

discretization is used. 

 
 

N SFD-MG NSFD-MG COND 

    L∞ N. 

iter 

CPU    L∞ N. 

iter 

CPU  

16                      3 0.03                      3 0.04 168 

32                       4 0.036                       4 0.05 640 

64                       5 0.09                       5 0.17 2488 

128                       6 0.3                       6 0.5 9806 

256                     6 0.98                      6 0.99 38,926 

512                       6 10                       6 13        

N NSFD-MG NSFD-Bicgstab COND 

    L∞ N. 

iter 

CPU    L∞ N. 

iter 

CPU  

16                      3 0.04                       9 0.047 168 

32                       4 0.05                       22 0.07 640 

64                       5 0.17                      47 0.21 2488 

128                       6 0.5                      93 0.12 9806 

256                      6 0.99                     190 0.4 38,926 

512                       6 13                       398 15        
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Fig.11. (a) Approximate solution obtained using MG-GMRES for     . (b) The corresponding 

exact solution for comparison. 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.12. Error surface for       using MG-GMRES, demonstrating a smooth distribution of very 

small errors across the domain, highlighting the high accuracy of the method. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.13. Absolute error versus iteration for      , illustrating the faster convergence of the MG 

method in comparison to BiCGStab. 
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                                        (a)                                                               (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.14. A comparison of the NSFD, SFD, and exact solutions at   
 

 
: (a) entire domain, (b) close-

up view highlighting the accuracy differences. 
 

7. Conclusion 
 

The comparison between NSFD and SFD methods shows that NSFD method offers superior accuracy 

when solving the two-dimensional Poisson equation with Dirichlet boundary conditions. This is 

evidenced by consistently lower error values in both the    and L∞ norms, indicating that NSFD provides 

a more precise representation of the underlying solution. Thus, NSFD proves to be a more reliable 

discretization method for this type of problem. 

After discretizing the two-dimensional Poisson equation using NSFD method, the resulting linear 

system was solved using two iterative solvers: MG with GMRES as a smoothing technique, and 

BiCGStab. Numerical experiments show that MG outperforms BiCGStab in terms of convergence rates, 

demonstrating better efficiency in both CPU time and the number of iterations needed for convergence. 

Additionally, MG consistently achieves a lower error across several tests, showcasing its superior 

computational performance. These findings emphasize the effectiveness of combining NSFDM with MG, 

offering a robust and precise framework for solving partial differential equations efficiently. The NSFD-

MG combination improves both solution accuracy and computational efficiency, making it a preferred 

choice for large-scale simulations.  
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