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ABSTRACT 

Background: Cancer remains a global health burden, and early, accurate diagnosis is vi- tal. Most 

deep learning models focus on binary classification, with limited work on multiclass tasks. The roles of 

miRNAs in cancer have also been studied. Objective: This study proposed a hybrid deep learning model 

based on Deep Long Short-Term Memory (D-LSTM) for binary and multi-class cancer classification. The 

important genes identified by the model were then used to predict target miRNAs. Methods: The D-

LSTM model was trained on GEO dataset GSE203024, covering 14 cancers, colon polyps, and normal 

samples. Gene selection was per- formed using ANOVA-F and CFS, and SMOTE was used to handle 

class imbalance. Performance was evaluated using the accuracy, precision, recall, and F1-score. miRNAs 

were identified using miRNet, and regulatory networks were visualized using Cytoscape. Results: The 

model achieved 98.38% accuracy (binary) and 99.88–100% (multi-class). hsa-miR-133b has been linked 

to 14 cancers and colon polyps, targeting CTNND1, CCNB1, and SUZ12. Conclusion: While demon- 

strating strong diagnostic potential, in silico findings require further biological validation. The 

comprehensive evaluation of hyperparameters, activation functions, and performance metrics of the 

model provides a flexible framework for cancer detection. Future studies should focus on in vivo/in vitro 

validation of hsa-miR-133b’s clinical relevance. 
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1. INTRODUCTION 
 

In recent years, many different technologies have been developed to detect and treat patients with 

cancer. Cancer remains one of the most critical public health challenges, with an estimated 2.5 million 

new cases and 640,038 cancer-related deaths projected in the United States in 2024, and over 3.2 million 

new cases and 1.7 million deaths in China, highlighting the global burden of the disease [1]. Today, 

women and men born in the USA have an estimated lifetime of 38% and 40%, respectively, of being 

diagnosed with cancer [2]. Despite significant progress in advancing molecular diagnostics and targeted 

therapies, classifying diverse cancer types using deep learning models, particularly in the early stages of 

cancer development, remains a persistent challenge [3]. The detection of patients with cancer using gene 

expression data has proven to be an effective approach for classifying different types of cancers, such as 

breast cancer, based on gene expression profiles [4]. Nonetheless, there is a lack of studies employing 

hybrid models that effectively classify different cancer types using both binary and multiclass 

classification. 

MicroRNAs (miRNAs) represent a class of small non-coding RNAs that play a key role in regulating 

gene expression and have been frequently involved in cancer development [5]. miRNAs can act as tumor 

suppressors by suppressing oncogenic genes or oncomiRs by targeting tumor suppressor genes involved 

in apoptosis and metastasis [6]. Identifying miRNAs that are consistently dysregulated across different 

cancer types remains a challenge for the development of pan-cancer biomarkers. Furthermore, the 

combination of deep learning models with miRNA-disease association frameworks has not been 

extensively studied. 

Deep LSTM models gene expression data by capturing sequential dependencies among genes, which 

enables high-accuracy pan-cancer classification and perturbation-based discovery of functionally sig- 

nificant biomarkers [7]. Research has demonstrated the effectiveness of Deep LSTM in cancer clas- 

sification when integrated with Convolutional Neural Networks (CNNs) to identify critical features and 

optimize parameters for accurate gene expression data analysis [8]. Recent studies have shown that 

LSTM models exhibit robust performance in managing irregular and incomplete time-series data from 

tumor marker tests, thereby enabling early cancer detection and improving the screening accu- racy in 

real-world clinical settings [9]. 

In this study, a deep long short-term memory neural network (D-LSTM) was developed to model gene 

expression data, including 14 cancer types, one type of colon polyp, and one healthy type. This model 

achieves robust performance for both binary and multiclass tumor classification. Key genes were used to 

build the model and explore their linked regulatory miRNAs. This comprehensive analysis reveals has-

miR-133b can act as a functionally conserved cancer inhibitor in different types of malignancies. 

 

2. MATERIALS AND METHODS 
 

2.1 Gene Expression Data from Human Peripheral Blood 

The biological dataset (GSE203024) represents a publicly available cancer diagnostic dataset derived 

from peripheral blood samples. It contained expression of 50675 genes across 2845 samples using the 

Affymetrix Human Genome U133 Plus 2.0 Array. This dataset also included 14 different cancer types, 1 

type of colon polyp, and 1 healthy type. It also contains 1547 male and 1013 female volun- teers with 

ages ranging from 18 to 97 years. In this study, a multi- and binary-cancer classification model was 

developed using a deep forward-feedback neural network to differentiate sample profiles across these 16 

types and normal samples from 14 cancer types, excluding colon polyps from the bi- nary classification 

process. Table 1 briefly summarizes the mRNA expression dataset showing cancer types by sex. 
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Table 1: Summary of cancer diagnoses by gender in GSE203024 dataset 

 

Cancer Type M F Unknown Gender Total Samples % 

Healthy 943 608 249 1800 63.25 

Colon polyps 145 81 1 227 7.97 

Colorectal cancer 124 81 0 205 7.20 

Prostate cancer 160 0 0 160 5.62 

Bladder cancer 67 40 2 109 3.83 

Nasopharyngeal cancer 57 21 21 99 3.48 

Breast cancer 2 61 32 95 3.34 

Ovarian cancer 0 64 0 64 2.25 

Cervical cancer 0 36 0 36 1.27 

Endometrial cancer 0 25 0 25 0.88 

Stomach cancer 15 6 2 23 0.81 

Liver cancer 14 2 0 16 0.56 

Kidney cancer 9 5 0 14 0.49 

Testicular cancer 11 0 0 11 0.39 

Pancreatic cancer 3 2 0 5 0.18 

Lung cancer 2 2 0 4 0.14 

Total 1547 1013 285 2845 100.00 

 
2.2. Data Preprocessing 

Figure 1 shows the steps in the data preprocessing phase. The dataset was transposed to create genes 

as features and samples as records. The gene IDs were replaced with their actual gene symbols, ex- 

cluding all gene IDs that did not include their corresponding gene symbols, which now contains only 

45782 genes out of 50675. Three columns (age, sex, and disease status) were added as additional features 

for further analysis. More data cleaning was performed, such as identifying and removing null values 

present in age and gender columns, and checking for data integrity. Next, a label encoder is applied to the 

three columns mentioned previously. Both gender and age columns were temporar- ily dropped to 

perform feature selection on the gene symbols to identify relevant genes affecting the classification 

process. Both Correlation-based Feature Subset Selection (CFS) approximation using feature importance 

from Random Forest and ANOVA-F-test were utilized by selecting the top 500 genes that were highly 

correlated to classifying disease classes. Figure 2a shows the number of genes that overlapped between 

the 2 feature selection methods for multi-class classification while in Fig- ure 2b shows overlapped genes 

agreed by 2 feature selection methods for binary-class classification. The age and gender columns were 

reinserted back into the dataset, which contained only overlapping features. Owing to the imbalance of 

the disease type classes, the synthetic minority oversampling technique (SMOTE) was used by up-

sampling all classes except the highest one to make all dis- ease types have the same number of samples 

for better classification. Finally, feature scaling was performed on the dataset, and the data were split into 

80% for training and 20% for testing. 
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Figure 1: A comprehensive diagram that shows data preprocessing steps. 

 

2.3. Proposed Model: Human-OncoNet 

This model, Human-OncoNet, represents a deep Long Short-Term Memory neural network (D- 

LSTM) approach for performing both multiple and binary classification using PyTorch. It was de- signed to 

categorize the input data, which, in this case, were genes, into predefined classes. It har- nesses the power of 

both deep neural network (DNN) and LSTM. This model consists of several components: input layers, multiple 

LSTM layers, hidden layers with nonlinear activation functions, dropout layers for regularization, a final output 

layer with softmax activation for multiclass classi- fication [10], as given by (1), and sigmoid activation for 

binary-class classification [11], as defined in (2). 

 

 



AJBAS Volume 6, Issue III, 2025  Eletr, et al  

 

325 
 

 

(a) The number of overlapped genes agreed by   

ANOVA_F_test and CFS_RF in multi-class 

classifi- cation. 

 

 
 

(b) The number of overlapped genes agreed by 

ANOVA_F_test and CFS_RF in binary-class 

classi- fication. 

Figure 2: Venn diagram illustration of overlapped genes for multi and binary-class classification. It 

depicts the most significant genes that are crucial for classifying disease status. 
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The architecture of the D-LSTM model is shown in Figures 3a and 3b used for binary and multi-class 

classification, respectively. The structure of the DNN model is depicted in Figures 3c and 3d which 

represent its configurations using both classification types. First, the input layers for the D-LSTM model 

passed the gene expression features to a stack of LSTM layers. These layers can capture long temporal 

dependencies by selectively remembering and forgetting information over a long sequence. Next, the last 

layer of LSTM passes its information to the first hidden layer, leading to a transition into dense (fully 

connected) layers. These dense layers contain hidden layers, activation functions that introduce 

nonlinearity to the model, and dropout layers that help prevent overfitting. Then, the output layer predicts 

the correct classification based on the learned patterns from the mRNA expression. The activation 

functions used in this study are the rectified linear unit (ReLU) [12], LeakyReLU [13], and hyperbolic 

tangent function (Tanh) [14], which are shown in (3), (4), and (5), respectively, and are very effective in 

training deep neural networks. 

 

ReLU(x) = max(0, x)                                                        (3) 

 

Lea y ReLU( )  {
     
      

        (4) 

 

Tanh( )  
      

      
           (5) 
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Figure 3: The architecture of D-LSTM and DNN models. 

 

To improve the model performance and the stability of its training, two weight initialization tech- 

niques are used: The Xavier initialization for layers with the ReLU activation function and He ini- 

tialization for layers with either LeakyReLU or Tanh [15]. Several optimizers such as Adam and 

Stochastic Gradient Descent (SGD) [16, 17] were used to build the model. 

Optuna was used for hyperparameter optimization because it uses efficient Bayesian optimization, 

which enables it to explore hyperparameter spaces and refine searches based on previous results. This is 

more advantageous than grid search, as it reduces the computational cost by stopping poorly per- forming 

trials early in the search, making it highly efficient for automating the hyper-tuning process. Multiple 

hypertuning parameters were used to perform trial and error to achieve the best parameters for both the D-

LSTM and DNN models. For both models, the trained parameters were 2 to 4 hidden layers, number of 

neurons ranging from 32 to 128 with step size of 32, dropout rate from 0.3 to 0.5, optimizers (Adam and 

SGD), Activation functions (ReLU, LeakyReLU, and Tanh), batch size (64 and 128), number of epochs 

from 10 to 100 with step size of 10, and weight initialization (Xavier and He). In addition, an extra 

parameter was added to model the D-LSTM, which is the number of LSTM layers ranging from two to 

three, as well as the number of neurons with the same step size and number of neurons as the hidden 

layers. The categorical cross-entropy loss function was used for multi-classification, whereas the binary 

cross-entropy loss function was employed for binary classification. The best parameters for both the 

models are listed in Table 2. 

 

 

 

 

 

(a) Architecture of D-LSTM model for binary-class 

classification. 

 

 
(b) Architecture of D-LSTM model for multi-class 
classification. 

 

 

(c) Architecture of DNN model for binary-class clas- 
sification. 

(d) Architecture of DNN model for multi-class clas- 

sification. 
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Table 2: Best hyperparameters for D-LSTM and DNN models for binary and multi-class classifica- 

tion using Optuna 

 

 
 

2.4. Evaluation Metrics 

The performance of the OncoNet model was evaluated using a confusion matrix. The evaluation 

metrics were calculated as follows: 

 

 
 

The acronyms TP, TN, FP, and FN represent true positives, true negatives, false positives, and false 

negatives, respectively. Eq. (6) indicates the true positive rate (TPR) and the detection rate (DR). These 

metrics were used to measure how well the model recognized positive instances. Eq. (7) rep- resents the 

true negative rate (TNR) as it quantifies how well the model identifies negative instances. Additionally, 

Eq. (8) represents the positive predictive value (PPV) because it measures the pro- portion of positive 

predictions that are actually correct. Moreover, F1-score in Eq. (9) reveals the harmonic mean of the TPR 

and PPV. Eq. (10) shows the accuracy metric, which is the proportion of correct predictions to the total 

number of predictions made using the test data. These metrics are important for assessing machine 

learning models to ensure the reliability of the classification process. 

 

2.5. Identification of Biomarkers and Construction of Regulatory Networks 

After training the proposed model using important genes as features, genes that were used as fea- tures 

for both binary and multiclass classification were used to identify miRNAs that target these genes. The 

miRNet platform was suitable for this analysis because it is designed for miRNA-centered network-based 

analysis by providing relationships between targeted genes and associated diseases, which in this case are 

14 different cancers and colon polyps [18]. After identifying miRNAs that tar- get genes associated with 

different cancers, a regulatory network was established using Cytoscape to visualize miRNA-gene 

interactions [19]. From these interactions, these findings identified important genes and miRNAs that play 

a key role in different cancers and potentially serve as biomarkers. 
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3. RESULTS AND DISCUSSION 

 

In Section 2.4, various metrics are mentioned, such as the F1-score, accuracy, precision, and recall, to 

evaluate the   del’s performance, as described in Section 3.4. This section will focus on the metrices 

results to investigate how well does the 2 models able to differentiate between disease status via binary 

and multi-class classification tasks 

 

3.2. Experiment configuration 

For the experimental design and setup, Table 3 describes the details of the tools and setup that were 

used to assess various metric parameters, enabling the generation of reliable results that can be used for 

further analysis. 

Table 3: Experiment Configuration 

 
 

3.3. Analysis of D-LSTM performance 

As shown in Table 4, it depicts the binary classification based on the proposed models for the 

GSE203024 dataset used to distinguish between cancerous and non-cancerous patients based on gene 

expression profiles. The performance of D-LSTM is overall good, achieving high accuracy regarding 

differentiation between normal and cancerous samples, with accuracy of 98.38% which is slightly less 

than using DNN model which had an accuracy of 98.55%. Furthermore, it shows that upon differentiating 

gene expression samples, D-LSTM classified classes very accurately including a TPR of 98.71% and a 

TNR of 98.06%, which further implies capabilities of the proposed model to rec- ognize healthy patients 

and patients suffering from cancer. Moreover, a comprehensive analysis of the proposed model using 

confusion matrix was performed to allow for more visual representation of classification result, as shown 

in Figures 4 and 5. This study also provided a brief summary of the classification performance of the 

model which is depicted in Figures 6a and 6b,   nit ring the   del’s perf r ance  ver ti e. After each 

iteration, the model was evaluated on the training data and validating data while implementing an early 

stopping to stop the training and validating process if the validation accuracy was less than the best 

validation accuracy three times consecutively. This prevents the model from potential overfitting and 

unnecessary training. Both the D-LSTM and DNN stopped the training and validation processes at epochs 

11 and 15, respectively. 

 

Table 4: Binary classification analysis of GSE203024 dataset 
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Figure 4: Confusion matrix of D-LSTM for binary classification 

 

 
Figure 5: Confusion matrix of DNN for binary classification. 

 

 

 

 

 
 

(b) Loss curve illustrating the distance between the true 

(a) Accuracy curve showing prediction outcome for values and values predicted by the model for both train 

training and validation data. ing and validation data. 

 

Figure 6: Training and validation accuracy and loss curves for both models on GSE203024. 

 

 

 



 Eletr, et al AJBAS Volume 6, Issue III, 2025 

 

330 
 

Table 5: Model Performance Metrics for Various Cancer Types 
Class Model TPR Recall Sensitivity TNR Specificity FPR FNR PPV Precision F1 Accuracy 

Bladder Cancer DNN D-

LSTM 

99.35% 

99.35% 

99.35% 

99.35% 

99.35% 

99.35% 

99.96% 

100.00% 

99.96% 

100.00% 

0.04% 

0.00% 

0.65% 

0.65% 

99.35% 

100.00% 

99.35% 

100.00% 

99.35% 

99.68% 

99.92% 

99.96% 

Breast Cancer DNN D-

LSTM 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

99.96% 

99.96% 

99.96% 

99.96% 

0.04% 

0.04% 

0.00% 

0.00% 

99.36% 

99.36% 

99.36% 

99.36% 

99.68% 

99.68% 

99.96% 

99.96% 

Cervical Cancer DNN D-

LSTM 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

99.98% 

100.00% 

99.98% 

0.00% 

0.02% 

0.00% 

0.00% 

100.00% 

99.68% 

100.00% 

99.68% 

100.00% 

99.84% 

100.00% 

99.98% 

Colon Polyps DNN D-

LSTM 

98.71% 

100.00% 

98.71% 

100.00% 

98.71% 

100.00% 

100.00% 

99.96% 

100.00% 

99.96% 

0.00% 

0.04% 

1.29% 

0.00% 

100.00% 

99.36% 

100.00% 

99.36% 

99.35% 

99.68% 

99.92% 

99.96% 

Colorectal Cancer DNN D-

LSTM 

99.68% 

98.06% 

99.68% 

98.06% 

99.68% 

98.06% 

99.96% 

100.00% 

99.96% 

100.00% 

0.04% 

0.00% 

0.32% 

1.94% 

99.35% 

100.00% 

99.35% 

100.00% 

99.52% 

99.02% 

99.94% 

99.88% 

Endometrial 
Cancer 

DNN D-

LSTM 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

0.00% 

0.00% 

0.00% 

0.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

Kidney Cancer DNN D-

LSTM 

100.00% 

99.68% 

100.00% 

99.68% 

100.00% 

99.68% 

99.98% 

99.94% 

99.98% 

99.94% 

0.02% 

0.06% 

0.00% 

0.32% 

99.68% 

99.04% 

99.68% 

99.04% 

99.84% 

99.36% 

99.98% 

99.92% 

Liver Cancer DNN D-

LSTM 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

99.98% 

99.94% 

99.98% 

99.94% 

0.02% 

0.06% 

0.00% 

0.00% 

99.68% 

99.04% 

99.68% 

99.04% 

99.84% 

99.52% 

99.98% 

99.94% 

Lung Cancer DNN D-

LSTM 

99.68% 

100.00% 

99.68% 

100.00% 

99.68% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

0.00% 

0.00% 

0.32% 

0.00% 

100.00% 

100.00% 

100.00% 

100.00% 

99.84% 

100.00% 

99.98% 

100.00% 

Nasopharyngeal 
Cancer 

DNN D-

LSTM 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

0.00% 

0.00% 

0.00% 

0.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

Healthy DNN D-

LSTM 

98.71% 

96.77% 

98.71% 

96.77% 

98.71% 

96.77% 

100.00% 

100.00% 

100.00% 

100.00% 

0.00% 

0.00% 

1.29% 

3.23% 

100.00% 

100.00% 

100.00% 

100.00% 

99.35% 

98.36% 

99.92% 

99.80% 

Ovarian Cancer DNN D-

LSTM 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

99.96% 

100.00% 

99.96% 

0.00% 

0.04% 

0.00% 

0.00% 

100.00% 

99.36% 

100.00% 

99.36% 

100.00% 

99.68% 

100.00% 

99.96% 

Pancreatic Cancer DNN D-

LSTM 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

0.00% 

0.00% 

0.00% 

0.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

Prostate Cancer DNN D-

LSTM 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

99.94% 

99.91% 

99.94% 

99.91% 

0.06% 

0.09% 

0.00% 

0.00% 

99.04% 

98.72% 

99.04% 

98.72% 

99.52% 

99.36% 

99.94% 

99.92% 

Stomach Cancer DNN D-

LSTM 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

99.98% 

99.98% 

99.98% 

99.98% 

0.02% 

0.02% 

0.00% 

0.00% 

99.68% 

99.68% 

99.68% 

99.68% 

99.84% 

99.84% 

99.98% 

99.98% 

Testicular Cancer DNN D-

LSTM 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

99.98% 

100.00% 

99.98% 

0.00% 

0.02% 

0.00% 

0.00% 

100.00% 

99.68% 

100.00% 

99.68% 

100.00% 

99.84% 

100.00% 

99.98% 

 

Table 5 shows the performance of the model based on its multiclass classification tasks. It is worth 

noting that D-LSTM showed remarkable accuracy, ranging from 99.92% to 100.00%, further demon- 

strating the robustness of the model in differentiating between the disease status of patients. Further- 

more, the model achieved 100.00% accuracy in identifying patients with endometrial, lung, nasopha- 

ryngeal, and pancreatic cancers. All the classes had a good overall F1-score, which ranged from 99.02% 

to 100.00%, showing remarkable ability to distinguish between various disease types. More- over, a recall 

of 100.00% was achieved in terms of classifying ovarian, pancreatic, prostate, stomach, and testicular 

cancers, highlighting the effectiveness of the model in detecting these cancer types. To gain further 

insight into the accurate classification of the D-LSTM model, it is important to evaluate the results shown 

in the confusion matrix, as shown in Figures 7 and 8. Examining the confusion ma- trix allows a better 

understanding of the overall performance of the model. To verify the ability of the model to classify a 

validation dataset, Figures 9a and 9b show a summary of the performance of the model. Early stopping 

was achieved in the D-LSTM and DNN models at epochs 12 and 19. Similar to binary classification, the 

performance of the model was monitored by training and validating with the same early stopping strategy, 

similar to the approach used in binary classification. 

 

 

3.3. MiRNA-gene-disease network analysis 

As previously mentioned in Figure 2, this study combined the gene features used for binary and 

multiclass classifications, which were 51 and 135 genes, respectively. This list contained 174 genes, 12 of 

which were common between the two sets. These genes were submitted to the miRNet database to 

identify the miRNAs that target these genes. These results showed that only 79 genes were targeted by the 

1425 miRNAs. Additionally, 873 miRNAs were associated with 14 different types of cancers, colon 

polyps, and cancer. Additional preprocessing was performed to identify the association between the 79 

genes and the progression of different cancer types through miRNA regulation. However, only general 

cancer and 10 different types of cancer were associated with 73 out of the 79 genes through 72 miRNAs. 

Finally, the miRNA-gene-cancer interaction network was visualized using Cytoscope, as shown in Figure 

10. 

In this study, we aimed to leverage the strengths of LSTM and DNN in a single model to enhance the 

overall performance and accuracy of cancer detection. The proposed hybrid model improved the 

performance of both binary and multiclass classification tasks. Moreover, many different feature 

selections can be used to reduce dimensionality; therefore, ANOVA F-test and CFS were used to eval- 

uate feature importance among the top 500 genes for both binary and multiclass classification tasks. 
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Figure 7: Confusion matrix of D-LSTM for multi-class classification. 

 

 
 

Figure 8: Confusion matrix of DNN for multi-class classification. 

 

  
(b)  Loss curve illustrating the distance between the true 

(a) Accuracy curve showing prediction outcome for values and values predicted by the model for both 

train- 

training and validation data. ing and validation data. 

Figure 9: Training and validation accuracy and loss curves for both models on GSE203024 

for multi- class classification. 
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Figure 10: MiRNA-gene-cancer interaction network. The light blue circles represent genes. The red 

triangles indicate miRNAs. The green rectangles show different cancer types and general cancer 

associated with miRNAs. 

 

The overlapping features between the two methods were determined to eliminate redundant genes that 

did not correlate with the distinction between different cancer types. Furthermore, when addressing class 

imbalance, The SMOTE method was used for up-sampling minority samples to obtain the same number 

as the majority sample, which in this case was healthy. Additionally, this was performed to increase the 

overall performance of the training and validating sets, ensuring equal importance of fea- tures to mitigate 

the impact of class imbalance. In addition, many different metrics such as accuracy, precision, recall, and 

F1-score were used to determine the performance of the model for each class. Hyperparameter tuning is a 

critical process in training a neural network that aids in determining the optimal set of parameters that 

maximizes accuracy. In this case, the Optuna technique was used to automate the hyperparameter-tuning 

process for the proposed model. This study experimented with different hyperparameters, such as the 

number of hidden layers and neurons, dropout rates, learning rates, optimizer, activation functions, batch 

size, epochs, weight initializations, and the number of LSTM layers, along with their corresponding 

number of neurons. These parameters were used to determine the optimal settings that yielded the best 

accuracy for the proposed model. 
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Figure 11: C  paris n  f   del’s perf r ance with different hyperpara eters using Optuna f r 

binary classification. 
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Figure 12: C  paris n  f   del’s perf r ance with different hyperparameters using 

Optuna for multi-class classification. 

 

To illustrate the performance of the different parameters for binary classification, as mentioned previ- 

ously in Table 2, Figure 11a illustrates the accuracy of the model in response to the top three dropout 

rates of 0.45, achieving the highest accuracy. Figure 11b sh ws the   del’s accuracy in resp nd t  t p 3 

learning rates with 0.000657 obtaining the best accuracy. Figure 11c shows the accuracy of the proposed 
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model in response to different optimizers, indicating that Adam achieved the best accuracy. Figure 11d 

illustrates the accuracy of the model in response to different weight initializations, with Xavier indicating 

optimal accuracy. In addition, Figure 11e shows the performance of the model corresponding to different 

activation functions, with ReLU as the parameter that achieved the highest accuracy. Furthermore, Figure 

11f indicates the accuracy of the model in response to the top three epochs, with 60 epochs achieving the 

highest accuracy. Figure 11g shows the performance of the model using different batch sizes of 64 to 

obtain the best accuracy. Furthermore, Figure 11h shows the performance of the model using 64 LSTM 

neurons, which achieved the best accuracy. For mul- ticlass classification, these hyperparameters are 

illustrated in Figures 12a through 12h with the same approach as binary classification, where the different 

parameters are explicitly explained in detail. 

The proposed Human-OncoNet is a deep LSTM-based model for binary classification of cancer in 

human samples based on peripheral blood gene expression profiles. The model demonstrates the ability to 

classify the presence of cancer with an accuracy of 98.38%, precision of 98.08%, recall of 98.71%, and 

F1-score of 98.39%. Together, these metrics show that the model effectively de- tects and differentiates 

cancerous and non-cancerous samples with balanced true-positive and true- negative samples. The model 

consistently distinguished between classes with low false-positive and false-negative rates. Furthermore, 

it is valuable to consider other methods of evaluation, namely sen- sitivity, specificity, precision, and F1-

score, which are more comprehensive methods of evaluation than accuracy alone. In the multi-class 

classification context, Human-OncoNet was shown to be ex- ceptionally effective within a cohort 

comprising 14 different cancer types, in addition to a healthy class of samples, based on gene expression 

data derived from peripheral blood. The LSTM-based model provided an overall accuracy of 99.94% and 

the F1-scores for the cancer types individually ranged from 98.36% to 100%. Generally, the precision and 

recall metrics for most cancer types were 

> 99%, indicating that the model was highly balanced and characterized by minimal false negative and 

false positive classifications. However, the model achieved a 100% F1-score and perfect recall for 

detecting the relevant cancer types, such as endometrial, lung, nasopharyngeal, and pancreatic cancer, 

which demonstrated strong distinguishing ability. These results suggest a near-perfect performance in the 

surgical classification context and illustrate the potential of Human-OncoNet as a non-invasive diagnostic 

tool for the early and accurate detection of multiple cancers based on transcriptomic data. To evaluate the 

effectiveness of this study, Table 6 shows a comparative analysis with different mod- els previously 

proposed in the literature. Compared to previous approaches, such as ANN, GRU, and Res-Net-based 

models, the proposed model provided consistently better recall, precision, F1 scores, and accuracy, 

particularly distinguishing cancerous from non-cancerous samples and differentiating between different 

types of cancers and colon polyps. 

In this study, these findings showed that hsa-miR-107 and hsa-miR-133b were involved the most in 

many different types of cancer, including breast cancer, colorectal cancer, lung cancer, ovarian can- cer, 

pancreatic cancer, prostate cancer, hepatocellular carcinoma, and bladder cancer. Additionally, CTNND1, 

CCNB1, ZMYM2, and SUZ12 were targeted by the highest number of miRNAs involved in different 

types of cancer, underscoring their central role in cancer. hsa-miR-107 act as a tumor- suppressive 

microRNA in breast cancer [28], lung cancer [29], pancreatic cancer [30], and hepato- cellular carcinoma 

[31] while it acts as oncomiR in colorectal cancer [32], ovarian cancer [33], and prostate cancer [34]. 

From these findings, hsa-miR-107 have a multifaceted role in breast cancer by targeting both oncogenes 

(CTNND1, CCNB1, SUZ12) and tumor suppressor genes (ZMYM2) [35– 38]. However, in ovarian 

cancer, some genes, such as CTNND1 [39], act as tumor suppressor genes. It involves regulating cell-to-

cell adhesion, by stabilizing cadherin/catenin complex, indicating the role of hsa-miR-107 in promoting 

tumorigenesis by repressing the expression of CTNND1. Moreover, the role of hsa-miR-133b remains 

consistent across different types of cancers. it hinders cancer pro- gression in breast cancer [40], 

hepatocellular carcinoma [41], ovarian cancer [42], lung cancer [43], pancreatic cancer [44], colorectal 

cancer [45], prostate cancer [46], and bladder cancer [47]. It targets a range of genes including CTNND1, 

CCNB1, ZMYM2, and SUZ12. By investigating the role of genes and their targeted miRNAs, This study 

uncovered that the miRNA hsa-miR-133b consistently exhibits tumor suppressor activity across these 

cancers and plays an important role in cell proliferation and apoptosis [48], suggesting its potential as a 

functionally conserved biomarker in cancer research. However, further investigations regarding its 

expression in wider variety of cancers are required 

Despite the promising outcomes of this study, several limitations should be acknowledged. For exam- 

ple, the number of samples is relatively small (2845 samples) used for training and validating the deep 
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learning model, leading to limiting the generalization of the model across different cancer types. An- 

other issue is the several class imbalances in the dataset, which were mitigated by applying SMOTE to 

handle class imbalance. Although SMOTE is an effective method for balancing class representation, it is 

important to note that the samples generated by it are derived from existing minority class data and may 

not fully reflect the true biological variation. Consequently, there is a potential risk that the model may 

learn patterns that are artificial and that do not exist in real-world scenarios. Another lim- iting factor is 

that this study used only a single gene expression dataset obtained from GEO, making it difficult to 

generalize the findings across different populations. Lastly, while these promising insights identified hsa-

miR-133b as functionally conserved biomarker in cancer, all of the analysis was done in silico, neither in 

vivo or in vitro, requiring biological validation to provide clinical relevance in diagnosis or therapy. 

Future research should focus on performing functional experiments to confirm the role of has-miR-133b 

and explore its mechanism of action in diverse cancer types. 

 

 

Table 6: Performance comparison of deep learning models for cancer detection 

 

 

Ref Model Dataset PPV TPR F1 Accuracy 

[20] GRU (RNN) RNA-seq (binary) 96.8% 97.4% 97.1% 97.2% 

[21] FFN + PCA TCGA (Kidney cancer) 97.9% – 98.0% 98.2% 

[22] DeepCues (CNN) WES data (7 cancer types) – – – 77.6% 

[23] ANN (Pan-cancer) Gene expression (multi-class) 96.13% 95.73% 95.60% 95.74% 

[24] ResNet-18 Dermoscopic skin cancer images – – – 89.0% 

[25] ANN Gene expression (breast cancer) 94.0% 96.0% 95.0% 95.0% 

[26] MGAN-FB 8 gene microarray datasets 97.34% 96.23% 96.72% 97.18% 

[27] APTIMA mRNA HPV Cervical screening (meta-analysis) – 98% – – 

Proposed D-LSTM Peripheral blood gene expression (GSE203024) 98.08% 98.71% 98.39% 98.38% 

 (Multiclass) 14 cancer types + healthy + colon polyps 98.72–100% 96.77–100% 99.02–100% 99.88–100% 

 

 

3. CONCLUSION 
 

 In conclusion, this paper presents a comprehensive analysis using both binary and multiclass classi- 

fication methods to ensure the success of the experiment and provides all necessary details, includ- ing 

accuracy, system specifications, number of hyperparameters, activation function performance, batch size 

performance, confusion matrix, trial performance, hidden layer performance, epoch performance, 

classification loss, weight initialization, dropout rate, optimizer efficiency, and multi-model 

  

comparison. SMOTE and hyperparameter tuning techniques were applied to enhance the flexibility of 

the model and to facilitate a more accurate evaluation. Every component of the model was exam- ined 

thoroughly to assess its performance. By employing deep learning techniques, the model can detect the 

presence of cancer in patients and identify the specific type of cancer, thereby supporting timely and 

accurate diagnosis. This approach has the potential to contribute meaningfully to medical diagnostics and 

improve overall diagnostic methodologies. 
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