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ABSTRACT 

Glaucoma is a leading cause of irreversible blindness globally, primarily characterized by progressive 

damage to the optic nerve, often associated with elevated intraocular pressure. Early detection is critical 

to preventing vision loss; however, traditional diagnostic methods depend on specialized equipment and 

skilled personnel. To address these limitations, this study evaluates and compares Conventional Neural 

Networks (CNNs) for glaucoma detection, utilizing multi-class and binary classification approaches. 

Specifically, it investigates the effectiveness of ResNet-50 and DenseNet-201 architectures in classifying 

retinal images. Additionally, the study assesses the interpretability of these models through Gradient-

weighted Class Activation Mapping (Grad-CAM) visualizations, providing insights into how each 

architecture identifies vital features associated with glaucoma. By integrating advanced CNN 

architectures and interpretability techniques, this research aims to enhance early glaucoma detection and 

contribute to more accessible diagnostic methods. For binary classification, the combined ResNet-50 and 

DenseNet-201 models achieved a precision of 1, recall of 0.92, Specificity of 1, F1 score of 0.958, and 

accuracy of 0.961. For multi-class classification, the models yielded a precision of 0.8889, recall of 

0.8421, Specificity of 0.935, F1 score of 0.8649, and accuracy of 0.9074. Grad-CAM visualizations 

provided insights into the models' focus areas and decision rationale. The binary classification approach 

demonstrated superior performance to the multi-class approach, indicating its potential for practical 

application in glaucoma detection. The use of Grad-CAM enhanced model interpretability, supporting the 

clinical applicability of AI-driven diagnostic tools. These findings highlight the effectiveness of CNN-

based methods in improving glaucoma diagnosis and emphasize the need for further research to optimize 

and validate these techniques in clinical settings. 
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1. INTRODUCTION 

Glaucoma is a complex, progressive eye condition characterized by damage to the optic nerve, 

typically linked to increased intraocular pressure (IOP) [1]. As one of the leading causes of irreversible 

blindness worldwide, it affects millions of individuals. The disease often progresses without noticeable 

symptoms in its early stages, making early diagnosis essential to prevent vision loss and ensure timely 

treatment [1]. Traditional methods for diagnosing glaucoma include visual field testing, optical coherence 

tomography (OCT), and tonometry. Although these techniques are well-established, they require 

specialized equipment and trained professionals and are also prone to human error[2]. 

Traditional diagnostic methods, although effective, have limitations that can impact their reliability 

and accessibility. Visual field tests can be time-consuming and may produce variable results based on 

patient cooperation and the operator's expertise [3]. OCT provides high-resolution images but is 

expensive and requires a trained specialist to interpret the results accurately. Tonometry measures 

intraocular pressure but does not directly assess the optic nerve, which is critical for accurate glaucoma 

diagnosis. Therefore, there is a growing need for more efficient and accessible diagnostic tools [3]. 

The advent of artificial intelligence (AI) and machine learning (ML) has the potential to address some 

of these limitations by providing automated, accurate, and scalable solutions. AI techniques, particularly 

CNNs, have performed exceptionally well in various medical imaging tasks. CNNs can automatically 

learn and extract features from images, improving the accuracy of disease detection and classification [4, 

5]. These advancements offer promising opportunities for enhancing glaucoma. CNNs are a class of deep 

learning algorithms specifically designed for processing structured grid data, such as images. They excel 

in image classification tasks by automatically learning hierarchical features from raw image data. This 

ability makes them particularly well-suited for medical image analysis, including glaucoma detection. 

Several CNN architectures, such as ResNet-50 and DenseNet-201, perform superiorly in various image 

classification challenges [6, 7]. ResNet-50 is a deep residual network that incorporates skip connections 

to mitigate the vanishing gradient problem in profound networks. This architecture has achieved 

remarkable success in various medical imaging tasks due to its robustness and high accuracy [8]. 

DenseNet-201 uses dense connections between layers to enhance feature propagation and reduce 

redundancy. This architecture has also demonstrated high performance in medical image classification 

tasks, making it a valuable tool for glaucoma detection.   

The glaucoma detection and classification approaches can be broadly categorized into multi-class and 

binary classification [10]. Multi-class classification involves categorizing images into multiple stages of 

the disease, such as normal, early glaucoma, and advanced glaucoma. This approach provides detailed 

insights into the disease's progression but may face challenges with class imbalance and complexity [10]. 

On the other hand, binary classification simplifies the problem by distinguishing between normal and 

glaucomatous conditions, which can be advantageous for practical applications due to its simplicity and 

higher accuracy [11]. Understanding and interpreting AI models is essential for their acceptance and 

effective use in clinical settings. Techniques like Grad-CAM provide visual explanations of model 

decisions by highlighting regions of an image that contribute to the model's predictions. This 

interpretability helps clinicians understand the basis of AI-driven diagnoses and build trust in automated 

systems [12]. 

2. 2. PREVIOUS WORKS 

The application of CNNs to glaucoma detection has been the subject of extensive research. This 

section investigates foundational studies and recent advances in the field, presenting a comprehensive 

overview of associated research through 2024. The application of CNNs for glaucoma detection started 

with studies that concentrated on binary classification. Early studies highlighted the potential of 

convolutional neural networks (CNNs) in detecting glaucoma from fundus images, demonstrating 

promising results [13]. Similarly, deep CNN models have been developed that outperform traditional 

classifiers, laying the groundwork for further research. Multi-class classification approaches have also 
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been explored to provide detailed insights into glaucoma progression [14]. Early work in this area utilized 

CNNs to classify images into normal, early, and advanced glaucoma categories [15]. Building on these 

efforts, more advanced deep learning models have been developed, achieving high accuracy in multi-class 

classification by integrating patient demographics with image data [16].Hybrid CNN models with spatial 

attention mechanisms have recently been proposed, significantly enhancing multi-class classification 

accuracy [17]. Multi-view CNN architectures have been introduced, aggregating information from 

various retinal views to enhance the robustness and performance of glaucoma classification [18]. 

Binary classification is widely used due to its simplicity and high diagnostic accuracy. CNN-based 

binary classifiers have been developed, achieving excellent sensitivity and specificity, further 

demonstrating the efficacy of deep learning in glaucoma detection [19]. Ensemble methods combining 

predictions from multiple deep CNN architectures have been introduced to further enhance classification 

accuracy [20]. An ensemble of lightweight CNNs optimized for mobile-based glaucoma detection has 

been proposed, providing a practical solution for low-resource settings [21]. Additionally, transfer 

learning with pre-trained CNNs has been employed to achieve high accuracy in binary classification, even 

with limited training data. Pre-trained architectures such as ResNet and DenseNet have become 

foundational in glaucoma detection models [22]. Researchers have demonstrated the effectiveness of 

ResNet-50 in glaucoma classification, achieving state-of-the-art performance [23]. DenseNet-201 has 

been recognized for its ability to capture complex retinal features, making it particularly effective in 

medical imaging tasks [24]. A variant of DenseNet-201 incorporating self-supervised learning has been 

introduced, enhancing feature extraction on small, imbalanced datasets. Model interpretability is crucial 

for the clinical adoption of AI systems, with Grad-CAM emerging as a popular method for visualizing 

CNN predictions [25]. Grad-CAM has been applied to glaucoma detection, offering valuable insights into 

the model's decision-making process [26]. Grad-CAM has also been integrated into the training process, 

enhancing both the accuracy and interpretability of glaucoma detection models [27]. In 2024, Grad-CAM 

was combined with Local Interpretable Model-Agnostic Explanations (LIME) to enhance the 

transparency of AI-driven diagnostic tools, making them more acceptable to clinicians. The field 

continues to see the development of innovative techniques aimed at improving glaucoma detection [28]. 

A deep reinforcement learning approach has been developed to optimize CNN architectures for glaucoma 

detection, demonstrating significant improvements over conventional methods [29]. A novel data 

augmentation technique using generative adversarial networks (GANs) has been introduced to address 

class imbalance in glaucoma datasets [30]. 

A diffusion model-based data synthesis method has been proposed, outperforming traditional GANs in 

generating high-quality synthetic retinal images for training CNNs. This approach effectively addresses 

class imbalance, a common challenge in multi-class classification [31]. The importance of multi-center 

datasets for developing robust and generalizable models has been emphasized. Their study explored 

federated learning, which allows CNNs to be trained on diverse datasets from different regions, 

enhancing the model's generalizability across populations [32]. 

Recent studies have explored cross-modality learning, where models are trained on multiple types of 

data. A multi-task learning framework has been proposed, combining fundus images and OCT data to 

enhance glaucoma detection. Their approach highlights the benefits of leveraging complementary 

information from multiple imaging modalities [33]. A graph-CNN approach has been introduced to model 

the structural relationships within retinal images, providing a novel perspective on feature extraction and 

disease classification. This method outperforms traditional CNNs by effectively capturing the spatial 

dependencies in retinal data [34]. 

Transfer learning has significantly enhanced CNN performance in glaucoma detection. Transfer 

learning has been applied to adapt pre-trained CNNs for glaucoma classification, achieving high accuracy 

even with limited training data [35]. This method is particularly valuable in low-resource settings where 

large, annotated datasets are unavailable. Additionally, domain adaptation techniques have been 

introduced to improve CNN performance on out-of-distribution data, enhancing the robustness of models 
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for real-world clinical applications. The development of real-time glaucoma detection systems has been a 

significant focus in recent years [36]. Compact Self-Organized Operational Neural Networks (Self-

ONNs) have been introduced for early glaucoma detection in fundus images, demonstrating superior 

performance compared to traditional CNNs on datasets such as ACRIMA, RIM-ONE, and ESOGU. 

These networks provide improved detection accuracy with lower computational complexity, making them 

particularly well-suited for biomedical applications, especially when data availability is limited [37]. 

A real-time glaucoma screening system called EyeDr. was developed using Darknet YOLO for optic 

disc and cup detection. This system, based on criteria like the Vertical Cup to Disc Ratio (VCDR ≥ 0.6) 

and the ISNT rule, was trained on 1,677 images and validated on 500 images. The AI achieved 92% 

accuracy, with sensitivity, specificity, and precision exceeding 91%, and can screen for glaucoma in 8 to 

12 seconds. Despite these advancements, several challenges remain in the field of glaucoma detection 

using CNNs. These include the need for large, annotated datasets, the development of more interpretable 

models, and the integration of AI tools into clinical practice. Future research should focus on addressing 

these issues to fully harness the potential of CNNs in glaucoma diagnosis [38]. The integration of AI-

driven diagnostic tools into electronic health record (EHR) systems was examined, highlighting the 

importance of interoperability between AI systems and existing healthcare infrastructure [39]. 

This study aims to compare the performance of multi-class and binary classification approaches for 

glaucoma detection using advanced CNN architectures, specifically ResNet-50 and DenseNet-201. We 

evaluate these models' accuracy, precision, recall, and F1 score, and use Grad-CAM visualizations to 

interpret their decision-making processes. By addressing these objectives, the study seeks to enhance 

understanding of the effectiveness of different classification approaches and provide insights into the 

practical application of AI in glaucoma diagnosis. 

3. METHODS 

The framework for this study includes multiple essential elements to ensure efficient glaucoma 

detection. The data preparation was performed via loading, augmenting retinal image in order to enhance 

diversity. Pre-processing steps are followed by employing pre-trained CNNs such as ResNet-50 and 

DenseNet-201 for feature extraction. These models are combined in an ensemble approach to improve 

classification accuracy. The Adam optimizer is utilized for efficient training. Evaluation metrics are used 

to assess performance, including accuracy, sensitivity, specificity, and F1-score. Additionally, Grad-CAM 

is employed to provide visual interpretability of model predictions. The framework shown in (Fig. 

1)describes the ensemble approach with individual models to validate its effectiveness in glaucoma 

detection.  

 

Fig (1): Architecture of the proposed system. 
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3.1. Data Preparation 

The dataset was loaded using MATLAB® image Datastore function, which efficiently manages large 

image datasets. It was then randomly divided into training and testing sets, with 70% of the images used 

for training and 30% for testing. 

3.2. Data Augmentation 

To enhance the model's robustness and mitigate overfitting, data augmentation was applied to the 

training images, exposing the model to various scenarios. The augmentation techniques used are shown in 

(Fig. 2) as follows  

Random Rotations (-30° to 30°): Address variations in image orientation due to patient positioning or 

camera alignment differences. The model was trained to recognize glaucomatous features irrespective of 

their angular disposition by rotating the images within this specified range. Random rotations were 

applied to increase the robustness of the model to variations in image orientation. This ensures that the 

model can recognize glaucoma features regardless of how the images are rotated, which is particularly 

important given that retinal images can be captured at various angles. The model learns to be invariant to 

such transformations by introducing rotation as a variability during training, thereby improving its 

generalization capabilities. 

Random Horizontal and Vertical Reflections: To simulate natural variations and ensure the model is 

not biased toward any specific orientation. Horizontal and vertical reflections were used to expose the 

model to flipped versions of the images. This augmentation simulates real-world scenarios where the 

eye's orientation can vary due to differences in patient positioning or imaging device. Reflections help the 

model generalize better by making it less sensitive to the orientation of the input images, ensuring that 

glaucoma features are correctly identified even when the images are mirrored. 

Random Scaling (0.7 to 1.3): To account for variations in the apparent size of retinal structures due to 

differences in the distance between the eye and the imaging device. This ensured that the model remained 

scale-invariant, improving its performance across images captured under different conditions. This 

augmentation simulates different magnification levels that might occur during image acquisition, ensuring 

that the model can handle images captured at various scales. By learning from scaled versions of the 

images, the model becomes more robust to variations in image size and can accurately detect glaucoma 

features across different resolutions. 

 

Fig (2): Data argumentation visualization: (a) input image, (b) Random rotation, (c) Random flips, and 

(d) Random scaling. 
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These augmentations were implemented to generate a more diverse training dataset, thereby improving 

the model's ability to generalize across real-world variations. 

3.3. Model Selection and Modification 

Two pre-trained CNN architectures depicted in (Fig. 3) were selected for this study: ResNet-50 and 

DenseNet-201. These models were chosen due to their proven effectiveness in image classification tasks. 

Both models were fine-tuned by replacing the final fully connected layer and the classification layer to 

match the number of classes in the dataset.  

 

 

 

 

 

 

Fig (3): Architecture of the ResNet-50 and DenseNet-201 models. 
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3.4. Model Training 

The modified models were trained using the Adam optimizer, selected for its computational efficiency 

and capability to handle sparse gradients. Adam merges with the advantages of AdaGrad, which is 

effective with sparse gradients, and RMSProp, which performs well in online settings. By adjusting the 

learning rate for each parameter individually, Adam is well-suited for optimizing deep learning models, 

such as the CNNs used in this study. This adaptiveness helps the model converge faster and more reliably, 

which is crucial when training on complex and diverse medical images. The training was conducted for 

13 epochs with a mini-batch size of 32, and the initial learning rate was set to 0.0001. Model performance 

was validated using the testing set every 30 iterations. 

3.5. Ensemble Model Prediction 

To improve classification performance, an ensemble model was developed by averaging the prediction 

probabilities from both the ResNet-50 and DenseNet-201 models. The final predicted label for each 

image was assigned based on the class with the highest average probability. The corresponding 

mathematical equation for averaging the results is the                   which can be defined as the 

average probability for class j for the i-th image, which is used to determine the final predicted label by 

selecting the class with the highest value. 

                  
 

 
             )               ))                                       (1) 

Where             ) is the predicted probability for class j for the i-th image using the ResNet-50 

model                  )is the predicted probability for class j for the i-th image using the DenseNet-201 

model. 

3.6. Model Evaluation  

The models were evaluated using standard performance metrics to ensure a comprehensive assessment 

of their capabilities. Metrics such as accuracy, sensitivity, specificity, and  F1 score were used to evaluate 

the models' performance across both binary and multi-class classification tasks. These metrics provide 

insights into the models' ability to correctly classify images into normal, early glaucoma, and advanced 

glaucoma categories, as well as their overall effectiveness in detecting glaucoma. The evaluation process 

was conducted consistently and systematically to ensure the reliability of the results. 

3.7. Model Interpretation using Grad-CAM  

To gain a deeper understanding of the model's predictions, Grad-CAM was used. Grad-CAM is a 

visualization technique that helps interpret the decisions of CNNs by highlighting the regions in the input 

images that most influence the model’s predictions. This method creates class-specific heatmaps that 

indicate where the network is focusing its attention, making it easier to understand which parts of an 

image are most relevant for classification. 

In this study, Grad-CAM was applied to both ResNet-50 and DenseNet-201 models. For each model, 

heatmaps were generated to visualize the regions in the input images that most significantly contributed to 

the predicted class. These heatmaps offer insights into the spatial patterns recognized by the models, 

which are particularly valuable for medical imaging tasks like glaucoma detection. 

To enhance interpretability further, a combined heatmap was created. This involves overlaying the 

heatmaps from the individual models onto the original images, providing a comprehensive view of how 

different models interact with the same input data. The combined heatmap highlights the areas where the 

models converge in their attention, offering a clearer picture of which features are consistently deemed 

necessary across different architectures. Grad-CAM visualizations were created by blending the generated 

heatmaps with the original images, as illustrated in (Fig. 4), to highlight which parts of the retinal images 

each model emphasizes more. 
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By utilizing Grad-CAM in this manner, the study aims to offer a more transparent view of the 

ensemble model's decision-making process. This approach not only helps verify the model’s focus and 

understand potential biases but also aids in validating the effectiveness of the model's predictions by 

correlating them with clinically relevant features in the images. 

 

Fig (4): Grad-Cam Visualization: : (a) input image, (b)Blended Image with Grad-CAM (ResNet),  

(c) Blended Image with Grad-CAM (DenseNet), and (d) Blended Image with Combined Heatmap. 

4. RESULTS AND DISCUSSION 

While the dataset provided sufficient variability for initial evaluations, its size and class imbalance 

pose limitations that may affect model generalizability and performance. The dataset, named 'V1,' 

,available online on the Harvard Dataverse (CARR0//NV0/.197.01iiod ), comprises a total of 1,544 

retinal fundus images categorized into three classes: Normal (51%, 788 images), Early Glaucoma (19%, 

289 images), and Advanced Glaucoma (30%, 467 images). For binary classification tasks, the Early and 

Advanced Glaucoma categories were merged into a single 'Glaucomatous' class, creating two categories: 

Normal and Glaucomatous. 

Despite providing valuable insights, the dataset size limits the model's ability to generalize effectively 

to unseen data from diverse populations. Retinal image variations, stemming from demographic 

differences, imaging equipment, and clinical conditions, may not be fully captured in this dataset. The 

limited sample size increases the risk of overfitting, where the model performs well on the training data 

but struggles to generalize to new images. To address this, data augmentation techniques, such as random 

rotations, reflections, and scaling, were applied. While these methods improved robustness by simulating 

variations encountered in real-world scenarios, they cannot fully replicate the benefits of larger, diverse 

datasets that naturally encompass such variability. 
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Evaluation Metrics 

The performance metrics for the binary and multi-class classification tasks can be derived from 

specific equations applied to the confusion matrix of the predictions. Here are the equations for each 

metric: 

Binary Classification: 

Precision is the ratio of true positives (TP) to the total number of optimistic predictions. True 

Classifications (TP) are accurate classifications. False positive (FP) measures or counts false positives 

and classifies negative cases as good. Estimation of model precision was performed using Eq. (2). 

                                                 
  

     
                                                                  (2) 

Recall (Sensitivity or True Positive Rate) 

The recall (FN) is the ratio of true positives (TPs) to all true positives and false negatives. The false 

negative (FN) value refers to the count of true positive cases incorrectly classified as negative. 

                                          
  

     
                                                                        (3) 

Evaluation of performance 

 To assess the accuracy, specificity, and sensitivity of Glaucoma classification in distinguishing the 

subjects. Both sensitivity and specificity are quantitative metrics that provide evidence of the importance. 

Of..a..test..in..determining..the..presence..or..absence..of..disease.  

Calculations for these two parameters are performed using equations (4) and (5) correspondingly. 

                                               
  

     
                                                                  (4) 

                                            
     

           
                                                         (5) 

F1 Score 

The F1 Score is mathematically defined as the weighted average of Precision and Recall. Thus, this 

metric considers both true positives and false negatives. While F1 may not be as intuitively 

comprehensible as accuracy, it is often more valuable than accuracy, mainly when dealing with uneven 

class-distributed data, and can be estimated from Equation (6). The optimal accuracy is achieved when 

the costs of false positives and false negatives are comparable. 

 

                                               
                

                
                                                     (6) 

Multi-Class Classification: 

For multi-class classification, the same metrics can be calculated for each class, and the overall metrics 

can be averaged (often weighted by the number of samples in each class). 

Given: 

   : True positives for class iii (e.g., correctly classified "Normal," "Early Glaucoma," or "Advanced 

Glaucoma"). 

   : False positives for class iii (e.g., other classes incorrectly classified as class iii). 

   : False negatives for class iii (e.g., class iii incorrectly classified as other classes). 
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 : Total number of samples. 

Precision (for class  ): 

                                                 
   

       
                                                                (7) 

The overall precision for multi-class classification is often the average of the class-wise precision. 

Recall (for class  ): 

                                                 
   

       
                                                                  (8) 

The overall recall for multi-class classification is often the average of the class-wise recall. 

Specificity(for class  ) : 

                             
   

       
                                                             (9) 

The overall Specificity for multi-class classification is often the average of the class-wise Specificity. 

F1 Score (for class  ): 

                                           
                  

                  
                                           (10) 

The overall F1 score for multi-class classification is often the average of the class-wise F1 scores. 

Accuracy: 

                                            
∑     

 
                                                               (11) 

The overall accuracy considers the correct predictions across all classes. 

 Binary Classification Results 

In the binary classification task, the dataset was split into two classes: "Normal" and "Glaucomatous," 

where the "Glaucomatous" class included both "Early Glaucoma" and "Advanced Glaucoma" images. 

The ensemble model, which combined the predictions from the ResNet-50 and DenseNet-201 models, 

demonstrated high performance in this classification task. 

1) Precision: The model achieved a high Precision of 1, indicating that all the images classified as 

"Glaucomatous" were correctly identified. 

2) Recall: The Recall was 0.92, showing the model's effectiveness in identifying "Glaucomatous" 

cases, though there were some instances that were not detected. 

3) Specificity: A specificity of 1 reflects the perfect performance of a classifier in identifying 

negative cases. 

4) F1 Score: The F1 Score of 0.958 reflects a balanced performance, combining both Precision and 

Recall. 

5) Accuracy: The overall Accuracy for the binary classification was 0.961, demonstrating the 

model's ability to correctly classify many images. 

These results highlight the ensemble model's effectiveness in distinguishing between normal and 

glaucomatous images, making it a robust tool for binary classification in glaucoma detection. 
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 Multi-Class Classification Results 

For the multi-class classification task, the dataset was divided into three distinct classes: "Normal," 

"Early Glaucoma," and "Advanced Glaucoma." The ensemble model was also evaluated on this more 

complex classification task. 

1) Precision: The model achieved a Precision of 0.8889 across all classes, indicating a slightly 

lower yet still strong ability to identify each class correctly compared to the binary task. 

2) Recall: The Recall was 0.8421, reflecting the model's capacity to detect images across the three 

classes, with some misclassification cases. 

3) Specificity: A specificity of 0.935 indicates that the classifier is highly effective at correctly 

identifying negative cases, with only a small proportion of negative cases being misclassified as 

positive. This level of specificity is generally considered excellent and reflects a well-performing 

classifier in terms of reducing false positives. 

4) F1 Score: The F1 Score was 0.8649, suggesting a balanced performance in multi-class 

classification. 

5) Accuracy: The overall Accuracy was 0.9074, demonstrating that the model correctly classified 

most images across all three classes. 

The multi-class classification results indicate that while the model performs well, the complexity of 

distinguishing between different stages of glaucoma presents a more challenging task compared to binary 

classification. 

 Confusion Matrix Analysis 

Confusion matrices were generated for binary and multi-class classification tasks to understand the 

model's performance better. The confusion matrix presents a summary of the prediction results, allowing 

for identifying patterns in misclassification. 

Binary Classification Confusion Matrix: The confusion matrix for the binary classification task 

revealed that the number of misclassified cases was relatively low, further supporting the high Precision 

and Recall scores. 

Table 1: The confusion matrix for Binary classification. 

 

 

 
 

Multi-Class Classification Confusion Matrix: In the multi-class classification task, the confusion 

matrix showed more variability in misclassifications, particularly between "Early Glaucoma" and 

"Advanced Glaucoma" images. This suggests that the model had more difficulty differentiating between 

these two classes, which is consistent with the lower Precision and Recall scores observed in the multi-

class task. 

 

 

 

 

 Normal Glaucomatous 

Normal 236 0 

Glaucomatous 18 208 
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Table 2: The confusion matrix for multi-classification. 

 

 

 

 

 

The confusion matrix for multi-class classification revealed challenges in distinguishing between 

Early and Advanced Glaucoma images, indicating a degree of overlap in the features the model identified 

for these two classes. These misclassifications can be attributed to the dataset's significant class 

imbalance. Early Glaucoma, which is underrepresented at 19%, provides fewer examples for the model to 

learn subtle distinguishing features, leading to reduced sensitivity for this class. 

The imbalance likely biased the model towards the majority classes, particularly Normal and 

Advanced Glaucoma, as reflected in the model's lower precision (0.8889) and recall (0.8421) for multi-

class classification tasks. Although merging the Early and Advanced Glaucoma classes into a single 

'Glaucomatous' category mitigated these challenges in the binary classification task, achieving high 

precision (1.0) and recall (0.92), this approach simplifies the problem and limits insights into disease 

progression. 

These observations underscore the need for addressing class imbalance in future work, either by 

incorporating larger, more balanced datasets or using advanced synthetic data generation techniques such 

as GANs to supplement underrepresented classes. Additionally, implementing strategies like focal loss or 

class-weighted training could further improve model sensitivity to minority classes, especially Early 

Glaucoma. 

Grad-CAM Visualization Results 

To gain insights into the decision-making processes of the models, Grad-CAM was used to visualize 

the regions of the images most influential in the model's predictions. Heatmaps were generated for both 

the ResNet-50 and DenseNet-201 models, providing a comprehensive view of the areas contributing most 

to the classification decisions, as shown in (Fig. 5). 

1) ResNet-50 Heatmaps: The heatmaps generated from the ResNet-50 model predominantly 

highlighted the optic disc and surrounding regions. These areas were identified as critical in 

distinguishing between normal and glaucomatous images, aligning with clinical knowledge that 

emphasizes the optic disc as a key region in glaucoma assessment. 

2) DenseNet-201 Heatmaps: In contrast, the DenseNet-201 model’s heatmaps not only emphasized 

the optic disc but also displayed broader activation across the retinal image. This suggests that 

DenseNet-201 considers more global features in its decision-making process, possibly reflecting 

additional retinal features that may be relevant to glaucoma detection. 

3) Combined Heatmaps: The combined heatmaps, resulting from an ensemble of both ResNet-50 and 

DenseNet-201, offered a more nuanced understanding of the models' decision-making. By merging 

the focus areas of both models, the combined heatmaps revealed a comprehensive assessment of 

the optic disc and surrounding areas, reinforcing the robustness of the ensemble model in capturing 

relevant features for glaucoma detection. 

These Grad-CAM visualizations were crucial for interpreting the decision-making processes of the 

models, highlighting regions of retinal fundus images that were most influential in their predictions. Both 

 Normal Early Glaucoma Advanced Glaucoma 

Normal 150 5 0 

Early Glaucoma 10 70 7 

Advanced Glaucoma 7 35 194 
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models consistently focused on the optic disc and surrounding regions, supporting the clinical relevance 

of these areas in the diagnosis of glaucoma. 

Correlation with Clinical Findings 

The heatmaps revealed important correlations with clinical findings, particularly focusing on the optic 

disc, which is a central feature in glaucoma diagnosis. 

1) Focus on the Optic Disc: The Grad-CAM heatmaps prominently highlighted the optic disc, a 

critical region in clinical glaucoma diagnosis. Changes in the optic disc, such as increased cupping 

or thinning of the neuroretinal rim, are well-documented indicators of glaucomatous damage. The 

models’ emphasis on these regions confirms their reliance on clinically meaningful visual patterns, 

enhancing their reliability for real-world diagnostic applications. 

2) Broader Activation Patterns in DenseNet-201: Compared to ResNet-50, DenseNet-201 

demonstrated broader activation patterns, suggesting that it considers additional retinal features 

beyond the optic disc. This wider focus may reflect sensitivity to peripheral changes associated 

with glaucoma progression, such as retinal nerve fiber layer thinning. The ensemble model, 

combining the strengths of both ResNet-50 and DenseNet-201, balanced localized and global 

features, likely contributing to its superior performance in distinguishing between normal and 

glaucomatous conditions. 

3) Consistency Across Grad-CAM Results: The consistency of the Grad-CAM visualizations with 

clinical observations especially the increased attention to the optic disc and associated pathological 

areas in advanced glaucoma cases validates the interpretability of the models. This consistency 

builds trust in the models' potential for clinical adoption. 

Enhancing Practical Implications 

The insights gained from Grad-CAM visualizations are crucial for enhancing the practical utility of 

AI-driven diagnostic tools in clinical settings. 

1) Supporting Clinical Decision-Making: Grad-CAM visualizations serve as supplementary tools for 

clinicians, offering an additional layer of confirmation for diagnoses and helping identify subtle 

pathological changes. By visually explaining the models’ decisions, these heatmaps increase the 

interpretability and acceptability of AI-driven tools, thereby supporting clinical decision-making. 

2) Identifying Potential Biases: The absence of focus on irrelevant regions in the visualizations 

highlights the robustness of the models. Future iterations of these models can use similar 

techniques to detect and address biases that may arise from the training data, ensuring further 

refinement and fairness in predictions. 

3) Future Refinements: To enhance the transparency and clinical utility of the models, combining 

Grad-CAM with other interpretability techniques, such as Local Interpretable Model-Agnostic 

Explanations (LIME), could provide a more comprehensive understanding of model decisions. This 

integration would allow for deeper insights into the decision-making processes, ensuring that AI 

models can be better trusted and adopted in clinical practice. 

These findings demonstrate that the predictions made by the models align with clinically relevant 

features, reinforcing the potential of these AI models as reliable tools for glaucoma detection. By 

providing clear visualizations of the decision-making processes, Grad-CAM not only enhances model 

transparency but also supports clinical trust in AI-powered diagnostic solutions. 
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Fig (5): Grad-CAM Visualization Results: (a) input image, (b) ResNet-50 Heatmaps, (c) DenseNet-201 

Heatmaps, and (d) Combined Heatmaps. 

The Grad-CAM visualizations confirmed that the models were making decisions based on clinically 

relevant areas of the retinal images, thereby providing confidence in the reliability and interpretability of 

the ensemble model's predictions. 

Comparison with State-of-the-Art Models 

This study presents an innovative approach to glaucoma detection by leveraging CNNs, specifically 

ResNet-50, and DenseNet-201, to enhance diagnostic accuracy. The comparative analysis of multi-class 

and binary classification approaches in conjunction with Grad-CAM visualization provides a 

comprehensive understanding of the models' performance and interpretability. The results demonstrate 

that both ResNet-50 and DenseNet-201 significantly improve glaucoma detection accuracy compared to 

traditional methods. The application of CNNs for both binary and multi-class classification tasks has 

shown promising results, aligning with recent advancements in deep learning for medical image analysis. 

Specifically, the hybrid ResNet-50 and DenseNet-201 models exhibited superior performance in detecting 

advanced glaucoma, which could be attributed to its dense connectivity and efficient feature reuse. The 

integration of Grad-CAM for visual interpretability has provided valuable insights into the decision-

making process of the models. By overlaying Grad-CAM heatmaps on the input images, we have 

identified the critical regions influencing the classification outcomes. This aligns with the work of [26], 

which emphasizes the importance of visual explanations in enhancing the transparency and 

trustworthiness of deep learning models in medical applications. Recent research has explored various 

deep-learning techniques for glaucoma detection, each with its strengths and limitations. The comparative 

analysis of our study's approach with five significant models highlights the advancements achieved in 

performance demonstrated in Table (3). 
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Table 3: Comparison table of the proposed model with state-of-the-art models. 

 

The proposed ensemble model (ResNet-50 + DenseNet-201) demonstrated exceptional performance in 

glaucoma detection, particularly in binary classification tasks. The model achieved precision (1), recall 

(0.92), specificity (1), F1 score (0.958), and accuracy (0.961). In multi-class classification, the metrics 

included precision (0.8889), recall (0.8421), specificity (0.935), F1 score (0.8649), and accuracy (0.9074). 

These results compare favorably to or surpass the performance of many state-of-the-art models reported 

in the literature. 

Advantages Over Existing Techniques 

1) Binary Classification Superiority 

Many state-of-the-art models focus on multi-class classification but struggle with class imbalance and 

overlapping features between stages of glaucoma. Our binary classification strategy addresses these issues 

by merging Early and Advanced Glaucoma into a single class, resulting in superior performance metrics. 

2) Enhanced Interpretability 

Many existing models lack transparency in decision-making, our integration of Gradient-weighted Class 

Activation Mapping (Grad-CAM) provides visual explanations for model predictions. This feature 

enhances clinical trust, making the model more suitable for real-world applications. 

Complementing Existing Approaches 

1) Focus on Retinal Fundus Imaging 

Unlike many state-of-the-art techniques that rely on optical coherence tomography (OCT) or advanced 

imaging modalities, this study highlights the feasibility of achieving high diagnostic accuracy using 

retinal fundus images alone. This makes the proposed approach more accessible and cost-effective, 

particularly in resource-limited settings. 

2) Novel Ensemble Model Design 

Ensemble models are underutilized in glaucoma detection. By leveraging ResNet-50’s ability to extract 

subtle local features and DenseNet-201’s capability to capture global features, our approach achieves a 

balance between specificity and sensitivity, improving robustness and overall performance. 

 

Author Dataset AUC Accuracy Sensitivity Specificity F1-Score 

Saxena et 

al.[40] 

SCES 88.2% - - - - 

Lin et al. [41] OHTS 

LAG 

90.4% 93% - - 49% 

Gomez-

Valverde et 

al. [42] 

Local dataset of 2313 

images 

94% 87.01% 89.01% 89.01% - 

Carlos et 

al.[43] 

RIM-ONE r3 91% - - - - 

Christopher et 

al. [16] 

Local dataset of 14,822 

images 

97% 88% 95% 95% - 

Proposed 

Method 

Binary 

classification V1 Harvard 

Dataverse 

- 96.1% 92.% 100% 95.8% 

Multi 

classification 

-  90.74%  

84.21% 

93.5% 86.49

% 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10217711/#B42-diagnostics-13-01738
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Future Directions 

1) Validation on Larger and Diverse Datasets 

Expanding the evaluation to larger datasets with diverse demographics and imaging conditions could 

provide further evidence of the model’s generalizability. 

2) Integration with Multi-Modal Data 

Combining retinal fundus imaging with OCT or other diagnostic modalities may further enhance feature 

representation and model performance, offering a more comprehensive solution for glaucoma detection. 

Clinical implementations 

The integration of Convolutional Neural Networks (CNNs) for glaucoma detection into real-world 

clinical workflows offers significant potential to enhance early diagnosis and prevent irreversible vision 

loss. Glaucoma, as one of the leading causes of blindness globally, requires timely intervention to 

mitigate damage to the optic nerve. While the CNN-based models investigated in this study show 

promising results for both binary and multi-class glaucoma classification, their real-world application in 

clinical settings, especially in resource-limited environments, comes with several challenges that must be 

addressed to realize their full potential. 

1) Integration into Clinical Workflows: A key consideration for implementing AI-driven models like 

CNNs into clinical practice is how these models can be seamlessly integrated into existing 

workflows. Current glaucoma diagnostics often rely on specialized equipment such as tonometers 

and retinal imaging devices, operated by trained clinicians. To be truly effective, AI models must 

work alongside these traditional methods, providing timely and accurate results that can assist 

clinicians in making informed decisions. For instance, AI models can be used to analyze retinal 

images, flagging potential glaucoma cases for further examination by ophthalmologists. The 

challenge lies in ensuring that AI outputs are presented in a manner that is intuitive for clinicians, 

allowing them to trust the model’s recommendations without replacing their clinical judgment. 

2) Infrastructure and Technology Constraints: In resource-limited settings, the availability of 

advanced medical imaging devices and the required computational infrastructure for running CNN 

models can be a major barrier to implementation. Retinal imaging devices capable of providing high-

quality images for analysis are often expensive, and such equipment may not be readily available in 

low-resource regions. Additionally, the processing power needed to run deep learning models 

effectively may not be feasible in many healthcare facilities, particularly in rural or underserved 

areas. For AI models to be useful in these settings, efforts must be made to develop more affordable, 

portable, and energy-efficient imaging technologies. Cloud-based solutions could be considered to 

offload computational tasks, enabling local healthcare facilities with limited computational resources 

to still benefit from AI-powered analysis. 

3) Data Availability and Quality: Successful deployment of CNN models for glaucoma detection 

hinges on access to large, high-quality datasets for training and validation. In many resource-limited 

settings, the availability of annotated retinal images may be scarce, hindering the development of 

robust AI models. Furthermore, if training data is not representative of the population served in a 

particular setting (e.g., racial or ethnic differences in retinal characteristics), the model’s 

performance could be compromised. To address this, collaborations between academic institutions, 

healthcare providers, and AI developers can help generate diverse datasets that reflect the real-world 

conditions of these regions. In some cases, local healthcare workers could be trained to capture and 

annotate images, allowing for the creation of tailored datasets that enhance the model’s accuracy and 

generalizability. 

4) Training and Acceptance Among Healthcare Providers: The introduction of AI models into 

clinical practice requires adequate training for healthcare providers who will be using these tools. In 

resource-limited settings, where access to advanced medical training may be limited, this could be a 

significant barrier. Healthcare providers need to understand not only how to operate the AI tools but 
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also how to interpret their output effectively. Since AI models often function as decision-support 

tools, ensuring that clinicians feel confident in using these tools and interpreting their results is 

crucial. Offering accessible, low-cost training programs through online courses or mobile apps could 

be an effective way to overcome this challenge. 

5) Cost-Effectiveness and Sustainability: In resource-limited settings, affordability is a key concern. 

The cost of implementing AI-based glaucoma detection tools must be considered, including both the 

initial deployment and ongoing maintenance. If the system is too expensive for widespread adoption, 

its impact will be limited. However, the potential long-term cost savings associated with early 

detection and treatment of glaucoma may offset the initial investment. AI models can streamline 

diagnostic processes, reduce the need for costly human labor, and improve patient outcomes by 

facilitating early intervention. Public-private partnerships or subsidies from international 

organizations may be essential to make AI-powered diagnostic tools more affordable and sustainable 

in low-resource environments. 

5. CONCLUSION 

This study aimed to enhance glaucoma detection by comparing the effectiveness of binary and multi-

class classification approaches using ensemble models based on ResNet-50 and DenseNet-201. Our 

comprehensive evaluation, employing a range of metrics and visual tools, provides valuable insights into 

the strengths and limitations of these models in glaucoma detection. For binary classification, the 

combined ResNet-50 and DenseNet-201 models achieved a precision of 1, recall of 0.92, Specificity of 1, 

F1 score of 0.958, and accuracy of 0.961. For multi-class classification, the models yielded a precision of 

0.8889, recall of 0.8421, Specificity of 0.935, F1 score of 0.8649, and accuracy of 0.9074.  

Binary Classification Performance: The ensemble model demonstrated exceptional performance in the 

binary classification task, achieving a precision of 1, recall of 0.92, Specificity of 1, F1 score of 0.958, 

and accuracy of 0.961. These results underscore the model’s ability to distinguish between normal and 

glaucomatous images effectively. The high Precision indicates that most images classified as 

"Glaucomatous" were accurate, while the high Recall reflects the model's proficiency in identifying 

glaucomatous cases. The ensemble approach proved to be robust in handling the binary classification 

task, highlighting its potential for clinical applications where a clear differentiation between normal and 

glaucomatous conditions is crucial. 

Multi-Class Classification Performance: In the multi-class classification task, the ensemble model 

achieved a a precision of 0.8889, recall of 0.8421, Specificity of 0.935, F1 score of 0.8649, and accuracy 

of 0.9074. . Although these metrics indicate strong overall performance, the results reveal the increased 

complexity of distinguishing among "Normal," "Early Glaucoma," and "Advanced Glaucoma" categories. 

The variability in misclassification patterns, particularly between early and advanced stages of glaucoma, 

highlights the challenges in differentiating between these closely related conditions. This suggests that 

while the ensemble model performs well, further refinement and additional features may be necessary to 

enhance its accuracy in multi-class scenarios. 

Confusion Matrix Insights: The confusion matrices provided detailed insights into the misclassification 

patterns. In binary classification, the error rate was low, reflecting the model’s high effectiveness. In 

multi-class classification, the confusion matrix highlighted challenges in distinguishing between "Early 

Glaucoma" and "Advanced Glaucoma," which impacted overall Precision and Recall. This indicates that 

the model’s ability to differentiate between stages of glaucoma needs improvement. 

Grad-CAM Visualization: The Grad-CAM visualizations revealed that both ResNet-50 and DenseNet-

201 models focused on the optic disc and surrounding areas, consistent with clinical knowledge of 

glaucoma assessment. The combined heatmaps from the ensemble model offered a comprehensive view 

of the regions influential in classification decisions, enhancing our understanding of the model’s focus 

areas and supporting its robustness in feature extraction. 
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In conclusion, this study highlights the potential of ensemble CNN models for effective glaucoma 

detection, particularly in binary classification scenarios. The insights gained from this research contribute 

to a deeper understanding of model performance and provide a foundation for future advancements in 

automated glaucoma detection systems. 
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