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ABSTRACT
Perovskite oxides are very important materials for different applications because they have a variety of
very interesting properties such as ferroelectric, antiferroelectric, ferromagnetic, antiferromagnetic,
semiconducting and superconducting at low temperature. Since the success of crystalline accommodation
law (CAL) in modeling perovskite halides, we aim in this work to use CAL for modeling perovskite
oxides. Here we show that a perfect agreement with the results obtained for halides perovskite as the
following: all perovskite oxides are formed at VEC = 4.8 and most of them crystallize in three systems;

cubic, hexagonal and orthorhombic with the number of filled zones in the valence band (5—”) =
B

12,24 and 48 respectively. It is also found that the dielectric ferroelectric perovskite oxides have the
orthorhombic structure of primitive cell volume (V;) ranges from 143.58 to 286.93 A2 corresponding to
the volume of Brillouin zone (V5 , volume of quantum state) ranges from 0.86 to 1.72 A. On average,
this is the smallest volume of quantum state. In the case of perovskite oxides, that can be converted into
superconductor at low temperature, have cubic structure with Ve ranges from 52.73 to 68.61 A’
corresponding to Vg ranges from 3.61 to 4.70 A%, On average, this is the largest volume of quantum state
for example the compound SrTiOs. In between it is found that the compounds which have hexagonal
structure are semiconducting with Vp ranges from 108.73 to 130.43 A® corresponding to Vg ranges from
1.90 to 2.28 A%, On the average, this is intermediate between orthorhombic and cubic.

Key Words: Perovskite oxides, Brillouin zone, Valence electron concentration, Crystalline accommodation law,
Volume of quantum state.

1. INTRODUCTION

Perovskite oxides (PO) are very important materials for different applications because they have a variety of
very interesting properties such as ferroelectric, antiferroelectric, ferromagnetic, antiferromagnetic, semiconducting
and superconducting at low temperature [1-6]. Lev Aleksevich Von Perovski, a Russian aristocrat and
mineralogist, was honored with initially discovering the calcium titanium oxide (CaTiO3) structure in the
Ural Mountains of Russia in 1839, which gave rise to the term "perovskites” [7]. Perovskites are
classified into different types and one of its important classifications is PO's. The general chemical
formula for PO is ABOjs, in which O is oxygen anion that forms bonds with both A and B, two cations
that are very dissimilar in size [8]. All these details are illustrated in Fig. 1, which shows the structure of
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PO that is characterized by an octahedral structure. The combination of B cations lie at the center of
octahedral and an oxygen anion O 2 at the heads of octahedron [9].

For examples the compound BaTiOs used in supercapacitors [10], LaFeO; used in gas sensors, and
fuel cells [11], PbTiO3 used in nonvolatile memory, infrared sensor, ultrasonic sensor and etc [12].

Q-
© =

O

a b

Fig. 1 : Crystal structure of perovskite oxides [13].

There are several attempts have been made to explain the structure of PO by analyzing the size ratio
and the geometry of the ions distribution. Goldschmidt attempted to determine the tolerance factor t in
1927 [14] depending on the ionic radius (r) which is given by the following equation;

— I'A+ 1Y)
\/E(rB+ o) (1)

where ra, g and rq are ionic radii of A, B cations and O anion respectively. This model depends on
three probably possible predictions of t values as following; i- the predicted structure is cubic if t equal 1.
ii- if t value fall in range 0.825 <t < 1.059, the structure will be either orthorhombic, tetragonal or cubic
and iii- in case of t is greater than 1.059, the structure will be hexagonal. If t is lower than 0.825, it will
not be crystallized in perovskite structure [14]-[17]. After 47 years exactly in 1974, Muller and Roy [18]
assumed the structure of 197 perovskite compounds depending on the ionic radii of cations A and B of
PO. They made a structural map between rn and rg of 197 PO in structural map and they found that PO
where in region away from non-perovskites compounds. However, this model lack of data accuracy of
some compounds. In 2001, An octahedral factor pu was proposed by Rohere [19] as given by equation 2;

w="8/p )

where rg and ro are ionic radius of B cation and O oxygen anion atom respectively. Rohere found that
the structure of PO is stable when p value larger than 0.414 and lower than 0.732. Li et al. [20] in 2003
created a t-pu 2D structure map model, which was based on the previous two models developed by
Goldschmidt and Rohere. They investigated 64 PO using the structural map. They found that 63 PO
follow the structural map and only one compound not follows the structural map. This model is still
limited and cannot determine the exact crystal structure of PO. L.Q. Jiange et al. [21] in 2006 tried to
predict the lattice constant in the ideal cubic structures of PO using 77 PO have cubic structure. They
found that the lattice parameters of all these compounds with average error not exceed 0.63% according
to the following equation:
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a=1.8836(r5 +1,) + 1.4898 M —1.2062 3)
V2(r + 10)
where ra , g and ro are ionic radii of A and B cations and O anion respectively. However, some
numbers in this equation do not have any physical interpretation and this equation was applied only for
cubic PO. Recently in 2019, a modification of t to new tolerance factor T was applied by Christopher J.
Bartel et al. [22] to predict the formation of PO. The new tolerance factor t is given by;

rA/TB

t= 2y (na — ) @

where na is the oxidation state of atom A. This study increased the correction possibility of producing
perovskite compounds from 83% of Goldschmidt’s model to be 92% in this model.

All the previous models are geometrical empirical and have no theoretical basis. In 2017, crystalline
accommodation law (CAL) was introduced by Tarek EI Ashram [23] and succeeded in explanation the
crystalline structure of materials. Moreover a very important model, based on CAL, was obtained by
Tarek ElI Ashram [24] called the quantum quantitative model (CALQQM). CALQQM is succeeded in
explaining the superconductivity at room temperature, energy levels, and the work functions of materials.
In addition CAL is succeeded in modeling inorganic perovskite halides (PH) and determined the
electronic structures of their valence bands [25]. Since the success of crystalline accommodation law in
modeling PH's, we aim in this work to use CAL for modeling PO's.

2. COMPUTATIONAL METHODOLOGY
The computational methodology was based on CAL. The parameters of CAL are VEC, n, Ve and V5.
These parameters were calculated from the crystal structure data obtained from ICDD cards [26] shown in
Table 1 as the following;

1- VEC is given by;

VEC of A+VEC of B+VEC of O
VEC = - (5)

The PO molecule consists of five atoms, 2 cations A and B and 3 anions O. According to the charge
neutrality of the molecule, the charge on cations must equal to the charge on the anions. The charge on
the cations varies in three different forms as the following; A**B*?0; such as GdGaO;, A™B*0; such as
CaTiOsand A™B*°0; such as KTaOs. For examples;

For GdGa0; VEC = === 4.8, CaTiO; VEC = ~—°= 4.8 and for KTaO;
1#1+1+5+3%6 .
VEC= — - 4.8. Actually it was found that all PO and PH are formed at VEC = 4.8.

2- n is the number of atoms per lattice point calculated from diffraction data shown on Table 1.

3- Ve is the volume of Fermi sphere and determined by;

4

where Kgis the Fermi electron wave vector given by;

3m2(0.6022)n VEC Dx
Mwt

K = (7)

where Mwt is the molecular weight and Dx is the calculated density from X-ray diffraction data

4- Vgis the volume of Brillouin zone (BZ) which is the volume of quantum state and is given by;
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Vg = —— 8
where Vp is the primitive cell volume.

The calculations were carried out on the PO, which are stable in normal conditions of temperature and
pressure as shown in Table 1.

3. RESULTS AND DISCUSSION

The parameters of CAL for PO's were calculated as given in Table 2. It is evident that all of PO's are
formed at the same VEC = 4.8 in agreement with the results obtained for PH's [25]. It also found that PO's
crystallize in three main systems, cubic, hexagonal and orthorhombic. For cubic system it was found that

the number of filled zones in the valence band (Z—F) = 12. For the hexagonal system it was found that the
B
number of filled zones in the valence band (Z—F) = 24. For the orthorhombic system it was found the
B

number of filled zones in the valence band (Z—F) = 48 in agreement with the results obtained for PH's
B
[25].
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Fig. 2: (a) Variation of BZ volume with the primitive cell volume. (b) Variation of Fermi sphere
volume with BZ volume. (c) Variation of Fermi energy with Fermi sphere volume. (d) Verification of
CAL for PO's.

Fig. 2a. shows the variation of Vg with V5. It shows that Vg decreases by increasing Vp as predicted by
equation (8). This means that the volume of quantum state decreases by incresing Vp. The maximum
volume of quantum state was found to be Vg = 4.70767 A2 for SmCo0O; and the minimum volume of
guantum state was found to be Vg = 0.864487 A for PrLuO;. This result indicates that SmCoO5 can be
converted into superconductor at low temperature while PrLuOs is dielectric [6]. It was also found that for
PO's, that have the orthorhombic structure, Vp ranges from 143.5876 to 286.9334 A® corresponding to Vg
ranges from 0.864487 to 1.72751 A, On the average, this is the smallest volume of quantum state. In
case of PO's with cubic structure, V, ranges from 52.73438 to 68.61886 A® corresponding to the volume
Vg ranges from 3.614898 to 4.703767 A, On the average, this is the largest volume of quantum state. In
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between we found that PO's, that have hexagonal structure, have V, ranges from 108.7328 to 130.4333 A®
corresponding to Vg ranges from 1.90174 to 2.281282 A,

Fig. 2b. shows the variation of Vi with Vz. It shows that Vr increases linearly with Vg according to
CAL for the three crystalline systems (cubic, hexagonal and orthorhmbic). The maximum Vg was found
for orthorhmbic system Ve = 82.9195 A for PbZrOs, and the minimum was found for distorted cubic
system Vg = 34.59461 A? for BaBiO;. Fig. 2c shows the variation of Er with V. It shows that Eg
increases by increasing Ve from 15.567 eV up to maximum value 27.8807 eV for PbZrO; orthorhombic
compound. The minimum value of Er was found to be 15.567 eV for BaBiO; distorted cubic. On the
average Eg is greater for orthorhmbic system than hexagonal system and is small for cubic system.

Fig. 2d shows the relation between Ve/Vg and nVEC/2. It shows that a linear relation as predicted by
CAL. That means verification of CAL for PO's.

The PO's that can be converted into superconductors at low temperature have cubic structure with the
largest volume of quantum state as SrTiO;. This compound is the most famous compound to have
superconducting properties [27]. The dielectric PO's have the orthorhombic structure with the smallest
volume of quantum state. It is found that the PO's with hexagonal structure are semiconducting and have
intermediate volume of quantum state such as BaCoOQs. It is clear from the above results that the electrical
properties of PO's depend on the volume of quantum states. The connection between the electrical
properties and the volume of quantum state is in a good agreement with CALQQM results [24].
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Table 1 : Crystal structure data obtained from ICDD cards [26] for PO's used in this study.
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compound | card no.
CeCro, | 750289 | Cub. Pm3m | 1] 48 | 5 | 6774 | 24011 | 3.89
PrCoO, | 750280 | Cub Pmam | 1| 48 | 5 | 762 | 247.84 | 3.76
SmCoO, | 750282 | Cub Pmam | 1| 48 | 5 | 8103 | 25733 | 3.75
SINDO, | 790625 |  Cub Pmam | 1| 48 | 5 | 5824 | 22852 | 4.024
KTaO, | 770918 | Cub Pmam | 1| 48 | 5 | 7016 | 268.04 | 3.9883
NdCoO; | 750281 | Cub Pm3m | 1| 48 | 5 | 7.784 | 25117 | 3.77
SITiO, | 840443 | Cub Pmam | 1| 48 | 5 | 5145 | 18352 | 3.898
SrZro, | 760167 | Cub Pm3m | 1 | 48 | 5 | 5489 | 226.84 | 4.094
CeVO, | 750284 | Cub Pmam | 1| 48 | 5 | 6692 | 239.06 | 3.9
NdVO, | 750286 | Cub Pmam | 1| 48 | 5 6.86 | 24318 | 3.89
PrCro, | 750290 |  Cub Pmam | 1| 48 | 5 | 679 | 2409 | 3.89
PrvO, | 750285 | Cub Pm3m | 1 | 48 | 5 | 6766 | 239.85 | 3.89
SmCro, | 750292 | Cub Pmam | 1| 48 | 5 | 723 | 25039 | 3.86
SmVO, | 750287 |  Cub Pmam | 1 | 48 | 5 | 7034 | 24434 | 3.89
SrMoO, | 810640 |  Cub Pmam | 1| 48 | 5 | 6168 | 23156 | 3.9651
BaMoO, | 893139 | Cub Pmam | 1 | 48 | 5 | 7.081 | 28127 | 4.0404
BaTiO, | 831880 D'zfgted pamm | 1| 48 | 5 | 6018 | 23323 | 3.9945 4.0335
BaBiO3 | 700602 D'ngted pa2m | 1| 48 | 5 761 | 39431 | 4364 4518
PbTIO3 | 780299 D'zfgted PAmm | 1 | 48 | 5 7.98 3031 | 3.94 4.063
CdTio, | 781015 | ortho Pon21 | 4 | 48 | 20 | 6315 | 20831 | 53063 | 54215 | 7.6176
NdGaO, | 812294 | ortho Pbn21 | 4 | 48 | 20 | 7571 | 261.96 | 54243 | 55014 | 7.7016
CazZtO, | 762401 | ortho Pemn | 4 | 48 | 20| 4611 | 1793 | 55912 | 8.0171 | 57616
NdCrO, | 880472 | ortho Phma | 4 | 48 | 20| 7.008 | 24423 | 54798 | 7.6918 | 54221
NdFeO, | 886644 | ortho Phma | 4 | 48 | 20 | 6.971 | 248.09 | 55887 | 7.7619 | 54489
CaVvO;, 860358 ortho Pnma 4 48 | 20 4.312 139.02 | 5.3171 | 7.5418 5.3396
SIRuO, | 895713 | ortho Phma | 4 | 48 | 20 | 6488 | 236.69 | 55368 | 7.8523 | 55731
LaCrOo, | 831327 | ortho Phma | 4 | 48 | 20 | 6782 | 2389 | 5476 | 7.752 | 5512
PrLuO, | 894507 | ortho Phma | 4 | 48 | 20 | 8423 | 363.87 | 5.9868 | 83202 | 5.7604
LaTiO, | 841089 | ortho Ponm | 4 | 48 | 20 | 6246 | 2348 | 56247 | 56071 | 7.9175
CaSnO, | 771797 | ortho Ponm | 4 | 48 | 20 | 5527 | 20677 | 5532 | 5681 | 7.906
CaTiO, | 820232 | ortho Ponm | 4 | 48 | 20 | 3876 | 13598 | 5475 | 54863 | 7.7579
CaGeO, | 751764 | ortho Ponm | 4 | 48 | 20 | 5171 | 160.67 | 52607 | 52688 | 7.4452
DyCoO, | 731197 | ortho Ponm | 4 | 48 | 20 | 8678 | 26043 | 5162 | 54 7.398
HoCoO, | 731198 | ortho Ponm | 4 | 48 | 20 | 8719 | 27186 | 5157 | 5429 | 7.397
ThCoO, | 731196 | ortho Ponm | 4 | 48 | 20 | 8484 | 26586 | 52 | 5394 | 7.421
LavO, | 782305 | ortho Ponm | 4 | 48 | 20 | 6558 | 237.85 | 5543 | 5543 7.84
MgSiO, | 841289 | ortho Ponm | 4 | 48 | 20 | 4107 | 10039 | 4.7754 | 4.9292 | 6.8969
YFeO, | 892609 | ortho Pbonm | 4 | 48 | 20 | 5696 | 192.75 | 52819 | 55956 | 7.6046
SrSnO, | 771798 | ortho Ponm | 4 | 48 | 20 | 6431 | 25431 | 5707 | 5707 | 8.064
GdGaO, | 700238 | ortho Ponm | 4 | 48 | 20 | 8098 | 27497 | 5334 | 5548 | 7.621
TbMnO, | 720379 | ortho Ponm | 4 | 48 | 20 | 7.607 | 261.86 | 5297 | 5831 | 7.403
PrRhO, | 231388 | ortho Ponm | 4 | 48 | 20 | 7.983 | 291.81 | 54143 | 57473 | 7.8026
SmAIO, | 711597 | ortho Ponm | 4 | 48 | 20 | 7155 | 22538 | 52912 | 52004 | 7.474
SmFeO, | 741474 | ortho Ponm | 4 | 48 | 20 | 7.246 | 25425 | 54 | 5597 | 7.711
SmInO, | 251106 | ortho Ponm | 4 | 48 | 20 | 7.825 | 31322 | 5587 | 5875 8.1
SmNiO, | 801948 | ortho Ponm | 4 | 48 | 20 | 7.789 | 2571 | 53283 | 54374 | 7.5675
TbCrO, | 251072 | ortho Ponm | 4 | 48 | 20 | 7.803 | 25892 | 5288 | 5506 757
NdNiO; | 801947 | ortho Pbonm | 4 | 48 | 20 | 7.546 | 250.94 | 53883 | 53845 | 7.6127
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Table 2: Results of CAL parameters for PO's.
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