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ABSTRACT 

After Earth, Venus has been the planet in our solar system most extensively explored. Solitary and 

double layers of plasma waves were found in the Venusian environment by analysis of the data provided 

by satellite observations (e.g., Venera, Mariner, Pioneer Venus Orbiter, and Venus Express). We 

investigate three-dimensional nonlinear electrostatic ion-acoustic waves (IAWs) between 10
3
 and 10

4
 km 

above the surface of Venus in a homogeneous, collisionless, unmagnetized plasma environment. Together 

with Maxwellian electrons from Venus, the plasma system under investigation contains two kinds of 

positively charged planetary ions, namely H
+
 and O

+
. Solar wind Maxwellian electrons and flowing 

protons are other interactions with this system. We derive the suitable evolution equation, the Kadomtsev-

Petviashvili (KP) equation, to model three-dimensional nonlinear ion acoustic solitary wave propagation. 

An essential part of explaining the development of the nonlinear wave phenomena in our plasma system 

is played by this equation. We applied an energy consideration-based approach to ascertain the stability of 

the solitary waves. With this method, we may ascertain if the solitary wave characteristics stay constant, 

during propagation, which advances our knowledge of wave behavior dynamics in three dimensions. 

Using energy-based analysis, we study the prerequisites for the stability and development of solitary 

waves. The stability of localized structures with transverse direction fluctuations is investigated. The 

wave propagation is studied at various altitudes in connection with the physical properties of the plasma 

in the Venusian ionosphere. This research enhances our understanding of ion-acoustic solitary waves 

within the plasma environment of Venus while also contributing to our broader knowledge of wave 

propagation mechanisms in space plasma.  

 

Key Words: Venus ionosphere; ion-acoustic waves; high altitude; Kadomtsev-Petviashvili KP equation; soliton; 

solar wind; plasma waves.  

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  

1. INTRODUCTION 

Space physics depends on our ability to comprehend the nonlinear processes that occur in the planet’s 

ionosphere. The characteristics of the planetary blockage and the attributes of different plasma parameters 

affect these nonlinearities [1]. Based on observations, the solar wind, which is an extension of the solar 

https://ajbas.journals.ekb.eg/article_376393.html
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corona, at 1 AU (AU is the Sun-Earth distance), has a typical ion number density of about 7 cm
−3

 and 

consists of approximately 95% protons and 5% helium, with other minor ions [2]. The interaction 

between the solar wind and planetary environments is determined by plasma properties, electromagnetic 

surroundings, and solar activity [3, 4]. The solar wind releases approximately 10
12

 g/s or one million 

metric tons of charged particles per second into space, with energy levels ranging from 1.5 to 10 keV and 

speeds ranging from 250 to 750 km/s [5]. Venus, Earth’s enigmatic twin, features a dense, turbulent 

atmosphere and lacks a global magnetic field [6]. Exposed directly to the solar wind, Venus’s ionosphere 

undergoes unique dynamics that shape its composition and density, influencing its surface protection and 

temperature regulation [7, 8].  

Although all rocky terrestrial planets, Mercury, Venus, Earth, and Mars, respond differently to solar 

wind [9], Earth and Mercury have intrinsic magnetic fields that shield them from direct solar wind 

exposure. In contrast, Venus and Mars lack such fields, exposing their atmospheres to direct solar wind 

interactions [10]. Planets with magnetic fields form magnetosphere cavities with extended tails, while 

those without generate magnetospheres through electric currents in their ionospheres. These variations are 

influenced by each planet’s distance from the sun and fluctuations in solar radiance and wind properties 

[11].  

We can learn more about solar-planetary interactions and planetary ionospheres by studying Venus’s 

plasma dynamics, which helps us find livable worlds outside of our solar system. Venus is therefore a 

subject of great scientific interest and the target of multiple space missions [12]. Venus’s plasma has been 

investigated by several missions [13]. Despite instrumentation limitations, the Pioneer Venus Orbiter 

(PVO) was the first long-term orbiter dedicated to these investigations, contributing to our understanding 

of Venus’s induced magnetosphere. Important data were obtained [14] from the ASPERA-4 Ion Mass 

Analyzer on Venus Express (VEX), which advanced our understanding of ionospheric ions and plasma 

flow. Venus does not have an internal magnetic dynamo, as proven by PVO’s magnetometer data [15]. 

Venus’s ionospheric ion composition is still being measured by ASPERA-4 [16]. Much recent work has 

been devoted to studying single waves near Venus’s plasma boundary. A thorough description of the 

electrostatic ion-acoustic waves (IAWs) seen in different Venusian plasma settings is provided by Yadav 

(2020) [12].  

Our goal in this work is to further understand possible nonlinear waves in the Venusian ionosphere at 

high altitudes between 10
3
 and 10

4
 km while accounting for the effect of the streaming solar wind. Our 

system encompasses two positively charged planetary ions, H
+
 and O

+ 
from Venus, along with isothermal 

electrons and streaming solar wind (SW) protons, accompanied by Maxwellian electrons. By employing 

reductive perturbation analysis, we derived the three-dimensional Kadomtsev-Petviashvili KP equation to 

depict the dynamics of weakly nonlinear electrostatic ion-acoustic waves (IAWs) within the Venusian 

ionosphere at altitudes spanning 10
3
 to 10

4
 km. In order to assess the stability of isolated waves, we 

utilized an energy consideration method. This technique advances our knowledge of the dynamics of 

wave behavior in three dimensions by allowing us to ascertain if the properties of solitary waves remain 

consistent during propagation [17].                                   
 

2. Plasma model 

Our investigation focuses on the propagation of three-dimensional (3D) nonlinear electrostatic ion-

acoustic waves (IAWs) in an unmagnetized plasma environment, characterized by uniformity and the 

absence of collisions. This plasma medium comprises two planetary ions, H
+
 and O

+
, originating from 

Venus, along with isothermal electrons, solar wind (SW) protons, and solar wind electrons, denoted by 

subscripts H, O, e, sp, and se, respectively [18]. Our system is designed to have cold plasma, which 

means that the temperature of the ions will be much lower than the effective temperature, Tion ≪ Teff, and 

finally, it will approach zero. The resultant normalized continuity and momentum equations governing the 

dynamics of these waves in the plasma system are provided by: 
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For   , 
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For solar wind protons, 

    

  
               ,                                                                         (1e) 
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                                                               (1f) 

For Venusian electrons, 

        ( ).                                                                        (1g) 

For solar wind electrons, 

          (  
 

   
  )                                                                          (1h) 

Equations (1a)-(1h) are coupled through Poisson’s equation: 

                                                                        (1i) 

In the above equations, the densities             , and     are normalized by the unperturbed 

densities   
( )
   
( )
   
( )
    
( )

, and    
( )

, respectively. Velocities (         ) for hydrogen, oxygen, and 

solar wind protons are normalized by oxygen acoustic speed    (
      

  
)  ⁄ .   is an electrostatic 

potential normalized by (
      

 
) . Space and time variables can be normalized by:     (

          

    
)  ⁄ , 

and    
  

 
 (

     

  
( )
  
)  ⁄ , respectively. Here    is the Boltzmann constant,   is the electron charge, 

      is the effective temperature defined by      *
 

  
 

 

   
+
  

,            ⁄  and    and     are the 

Venusian electron temperature and solar wind electron temperature. 

The following ratios are used in the previous equations:        ⁄ , which represents hydrogen to 

oxygen mass ratio,          ⁄  represents solar wind proton to oxygen mass ratio,     
( )

  
( )

⁄  

represents hydrogen to oxygen density ratio,     
( )

  
( )

⁄  represents solar wind proton to oxygen 

density ratio,      
( )

  
( )

⁄  represents Venusian electron to oxygen density ratio,      
( )

  
( )

⁄  

represents solar wind electron to oxygen density ratio. 

To obtain the KP equation, we apply reductive perturbation analysis [19] to equations (1a)-(1i), 

establishing a weakly nonlinear theory for three-dimensional small but finite amplitude IAWs. 

Consequently, we scale the space and time variables in the standard form as follows: 

   
 

 (    )                                                                  (2a) 

                                                                           (2b) 
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                                                                           (2c) 

                                                                            (2d) 

Here,   denotes a dimensionless expansion parameter quantifying the perturbation amplitude’s 

magnitude, while   is the phase velocity of IAWs along the x-axis normalized by   . Employing the 

reductive perturbation method involves expanding physical quantities like density, velocity, and potential 

around their equilibrium values as a power series of  . 
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                                               (3) 

The neutrality condition at equilibrium is satisfied by the relation 

                                                                   (4) 

Using the stretching coordinates (2a)-(2d) and replacing the perturbed quantities (3) in the normalized 

fundamental equations (1a)-(1i) and then collecting terms of order (ϵ) from the continuity and momentum 

equations in the δ-direction, we will obtain, 

  
( )  

 

    
  

( )                                                          (5a) 
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Upon gathering terms of order (    ) from the continuity and momentum equations along the   and   

directions, we will derive, 
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The Poisson’s equation’s lowest order of ( ) terms yields 

 

   
  

 

  
 

 

   (      
( )
)
    

 

   
                                                 (7) 

The compatibility condition governing our plasma system is represented by equation (7), which is a 

mathematical tool that is essential for figuring out the phase velocity of the IAWs. 

We obtain formulations for the second-order perturbed densities by solving the resulting system of 

equations (6a)-(6f) using the first-order equations (5a)-(5h). We eventually obtain the Kadomtsev–

Petviashvili (KP) nonlinear partial differential equation. 
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From now on, we shall use   instead of  ( ) for simplicity’s sake. Additionally, the system’s nonlinear, 

dispersive, and dispersion coefficients A, B, and C are defined as follows, in that order: 
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   (      
( )
)
 )                                                 (11) 

The KP equation governs the development of the fundamental approximation of electrostatic potential, 

which is associated with ion-acoustic waves (IAWs) in plasma. When transverse perturbations are 

factored in, an extra term appears in equation (8), converting it into the classical Korteweg–de Vries 

(KdV) equation in the absence of transverse perturbations. Consequently, the presence of transverse 

perturbations has the potential to modify the features of IAW structures. 
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3. Mathematical solution and discussion 

Since equation (8) includes the lowest-order nonlinearity and dispersion, it can only be used to describe 

small but finite amplitude waves. The breakdown of a soliton is indicated by a deviation in its width and 

velocity from the KP equation as the wave amplitude increases. Higher-order nonlinear and dispersive 

effects need to be taken into account in order to appropriately characterize solitons with larger amplitudes 

[20]. For this, the reductive perturbation method’s higher-order approximation is a useful tool. However, 

this study is not intended to address these higher-order effects. 

To obtain the soliton solution of (8), we introduce the traveling-wave transformation, 

                                                                         (12) 

where   represents the transformed coordinates in a frame moving with velocity U.   ,    and    are the 

directional cosines of the wave vector   along the  ,   and   axes, respectively, satisfying the relation 

  
    

    
   . Integrating (8) with respect to the variable   and applying the vanishing boundary 

condition for   and its derivatives up to the second order as | |   , yields 

   

   
 

 

   
   

 

    
  

                                                            (13) 

The one-soliton solution of equation (13) is given by, 

   ( )     (  )                                                               (14) 

where  ( )        
  is the amplitude of the soliton,   √

    
 

 
 is the width of soliton and       

 (    
 ). 

We will use an energy-based approach to evaluate whether a given plasma equilibrium is stable or 

unstable. Using this method, the change in the plasma’s potential energy as a result of a known 

perturbation is calculated. This approach yields the potential energy, which is commonly known as the 

Sagdeev potential [21] . Integrate equation (13) to yield the nonlinear equation of motion as 

 

 
(
  

  
)
 
  ( )                                                                (15) 

where the Sagdeev potential  ( ) is given by 

 ( )  
 

    
  

  
 

    
  

                                                      (16) 

A necessary condition for the existence of solitary waves is 

   ( )       for                                                         (17) 

A value of    ( )     greater than zero predicts the formation of a shock in the plasma. From (16) and 

(17) we obtain 

   ( )

   
 

  

   
                                                                         (18) 

Equation (18) shows that stable solitons will exist when 
  

   
   , otherwise stable solitons do not exist in 

the plasma. It is clear that   and    are greater than zero but   may be less than zero. 

We will study the IAWs numerically in a homogeneous, unmagnetized, collisionless plasma using data 

from the VEX Noon-Midnight (NM) meridian and PVO missions to make sure our results have physical 

significance. In light of transverse perturbations, our goal is to examine the effects of these factors on the 

propagation of IAWs in the Venusian ionosphere at altitudes ranging from     to     km. Examining the 
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behavior of the phase velocity   and how it relates to physical quantities like the temperature ratio     is 

enlightening. 

 

Figure 1: The phase velocity   versus the temperature ratio     (        ) is presented using 

parameter values              ,      ,          ,      ,        , and    
( )  

    . 

To gain insights into the phase velocity   of our nonlinear structures, we modified the compatibility 

condition (7) to form a fourth-order polynomial in  . We then solved this polynomial numerically, 

yielding four distinct roots. Each root corresponds to a possible mode with a specific phase velocity. 

These four roots are depicted in figure (1) plotted against the relative temperature     (        ). 

Figure (1) illustrates that there are four ion-acoustic modes, labeled as     , where it is clear that   is 

supersonic (i.e., ( >1)). Also, it is seen that        are forward (i.e., have a positive value) and    is 

backward (i.e., has a negative value). Consequently, we focus on the region where   is positive. It is 

important to mention here that in our following calculations we use the third root of   (i.e.,   ) since it is 

coincident with the space observations.  

 

 

 

 

 

 

 

 

 

 

Figure 2: The region plot illustrates the existence domain of localized structures solutions based on the 

direction cosine    and temperature ratio     (        ), with parameters              , 

     ,        ,        ,    √    
    

 ,      ,        , and    
( )        
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Figure (2) depicts the existence domain as a function of the direction cosine    and the temperature ratio 

   . This domain is divided into two regions: yellow zones where (   ) localized pulses can exist, and 

brown zones where (   ) localized pulses cannot propagate. According to condition 
 

   
 , we can 

conclude that localized solitary waves can exist for        . One can conclude that the solitary wave in 

our system can propagate only in the quasi-parallel case. In the quasi-parallel case, we set    and    to 

very low values (i.e.,       0). Hence, for a localized pulse (solitary wave) to exist, the transverse 

perturbation should be weak. Otherwise, it cannot propagate, and other nonlinear structures may occur, 

but they are outside the scope of the present work and will be considered in our future work. 

 

 

Figure 3: The effect of altitude on the solitary pulses against   at              , and      , 

       ,        ,    √    
    

  at altitude of     km, where      ,        ,    
( )  

    ,      , at 8x    km, where      ,         ,    
( )
     , at     km, with      , 

       ,    
( )      , and       

Figure (3) illustrates that at different altitudes, the localized pulse profile changes due to changes in 

plasma physical parameters. At higher altitudes, the amplitude of the solitary wave increases, but the 

width decreases. This can be explained by the fact that at high altitudes, the system receives energy from 

the streaming particles coming from the solar wind, which causes the amplitude to be taller. As we 

descend into the lower layers of the atmosphere, the density of the streaming particles decreases, and the 

pumped energy into the plasma decreases, resulting in a dwarfed pulse profile. 

 

 

 

 

 

 

 

 

 



AJBAS Volume 5, Issue IV, 2024  Farouk, et al  

 

569 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Profiles of solitary waves against ξ at altitude 10
3
 Km where, µH (= mH/mO) = µsp (= msp/mO) = 

0.0625, U=0.1, L1 = 0.96, L2 = 0.15, L3 =√  L1
2  L2

2
, γ (= ne

(0)
/nO

(0)
) = 1 + α + β - ρ, usp

(0) 
= 13.8, 

where: (a) profiles in dependence on σse (= Tse/Te) where, α (= nH
(0)

/nO
(0)

)=0.2, β (= nsp
(0)

 /nO
(0)

) = ρ (= 

nse
(0)

/nO
(0)

)=0.6, (b) profiles in dependence on α, where β=ρ=0.6, σse=1. (c) profiles in dependence on β, 

where α=0.2, ρ=0.6, σse=1. 

In figure (4), we investigate the effect of various physical parameters    ,  , and   on solitary waves. We 

examine the effect of the relative temperature     (        ) on solitary structures in figure 4(a), 

increasing relative temperature     considerably reduces the amplitude of the solitary pulse while slightly 

increasing its spatial coordinate, as shown in figure 4(a). This indicates that as the temperature of 

electrons increases, the energy of positive soliton pulses will decrease. Figure 4(b) illustrates that higher 

relative density  (   
( )   

( )) values increase the amplitude of the solitary pulse and decrease its 

width, which means that higher   values enhance the nonlinearity of the wave structures, also the density 

 (   
( )   

( )) of the positive component    will increase with altitude, as shown in 4(b), which will 

cause the streaming protons to pump energy into the system. Lower relative density  (    
( )   

( )) 

values increase the nonlinearity of the wave structures as shown in 4(c) as increasing   values, decreases 

the amplitude and increase the width of the pulse. It indicates that the system is getting energy from the 

solar wind particles that are flowing across it. A balance between nonlinearity and dispersion in the 

medium leads to the occurrence of solitons. Eventually, when the amplitude increases, the width 

decreases, and vice versa, due to the ability of solitons to maintain their shape over long distances. 
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4. Summary 

In summary, we studied the basic features of solitary waves in an unmagnetized, homogeneous, 

collisionless plasma system consisting of two positively charged planetary ions (   and   ) and 

electrons as long as solar wind protons and electrons. Reductive perturbation analysis has been used to 

obtain the three-dimensional KP equation, which describes the propagation of the IAWs at altitudes of 

(       ) km in the Venusian ionosphere. The Sagdeev potential was calculated using an energy-based 

approach. The conclusions derived from our work can be summed up as follows: 

(i) We investigated the four roots of   in relation to the relative temperature     (        ). Our 

findings indicate the existence of four ion-acoustic modes,     , where phase velocity is supersonic 

( >1). Furthermore, it can be observed that        is inward that is, it has a positive value while    is 

backward that is, it has a negative value. As a result, the region where   is positive is our main concern. 

Note that because    coincides with the space observations, we used the third root of   in our 

calculations. 

(ii) It is found that the direction cosine    parameter influences the occurrence of soliton pluses more than 

any other physical parameter. For        , it can be concluded that solitary wave exists only for quasi-

parallel propagation. 

(iii) We found that the energy pumped into the system by solar wind particles causes these solitary wave 

pulses to become taller at higher altitudes. 

(iv) We studied the effects of relative temperature     and relative densities  , and   on solitary waves. 

Increasing     reduces the amplitude and slightly increases the spatial size of solitary pulses, suggesting 

that the energy of positive soliton pulses decreases as electron temperatures increase. Higher   values 

increase the amplitude and decrease the width, indicating that greater   values enhance wave structures’ 

nonlinearity. Conversely, increasing   decreases the amplitude and increases the width, implying that the 

system is energized by solar wind particles, with a balance between nonlinearity and dispersion leading to 

solitons. 

(iv) As the effective temperature increases, the energy of the solitary pulses decreases, resulting in a 

shorter amplitude. Increasing   and   implies that the number density of the oxygen ions decreases. This 

reduces the charged moving ions and increases the energy per ion gained from the solar wind ions. This 

increases the total energy of the moving ions in our time-scale phenomena, resulting in a taller amplitude. 
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