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ABSTRACT 

The propagation of linear magnetosonic waves in a homogeneous collisionless magne- tized plasma 

composed of two positive ions and electrons is investigated. The dispersion relation is derived using 

linear analysis to describe the dynamics of the behavior of the magnetosonic wave. There are two 

propagating modes for every ion species. Magnetized mode at low wavenumbers and ion cyclotron mode 

at higher wavenumbers. Electrons also have two propagating modes: a Whistler mode at low 

wavenumbers and an electron cyclotron mode at higher wavenumbers. Also, a field mode is found to 

propagate at very high frequencies. The propagation of these localized structures against variations in the 

magnetic field and the ion number densities has been discussed.  Variations in the mag- netic field affect 

Alfven mode, Whistler mode, and the ion cyclotron modes. While the variations of number density 

influence the Alfven mode, Whistler mode, and field mode. This model is applied on the magnetosonic 

waves propagating in the Marian magnetosphere. 

  

Key Words: 

electromagnetic waves; Magnetosonic waves; Mars ionosphere; Linear magne- tosonic waves. 

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ  

1. INTRODUCTION 

Plasma waves are the oscillations or disturbances that occur in a medium composed of charged 

particles. These waves propagate carrying energy through the plasma. They can have various modes and 

characteristics, depending on factors such as the plasma density, temperature, and magnetic field strength. 

They can be categorized into different modes, including electrostatic waves, electromagnetic waves, and 

https://ajbas.journals.ekb.eg/article_337919.html
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hybrid waves . Langmuir Waves or Electron Plasma Waves are longitudinal waves [6], meaning that the 

particles oscillate parallel to the direction of wave propagation. They are generated by collective 

oscillations of electrons in plasma. Ion acoustic waves are also longitudinal waves but are driven by the 

collective motion of ions in a plasma. They involve the interaction between ions and the electrons they 

displace, creating a restoring force that propagates the wave. However, ion cyclotron waves are 

electromagnetic waves that occur in the presence of a magnetic field and are associated with the motion 

of ions in a circular path around the field lines. They have a frequency close to the ion cyclotron 

frequency. The upper hybrid Waves are a combination of Langmuir waves and electromagnetic waves. 

They occur when the plasma frequency is close to the electron cyclotron frequency. However, the lower 

hybrid waves are a combination of Langmuir waves and ion acoustic waves. They occur when the plasma 

frequency is close to the ion cyclotron frequency.Whistler waves are electromagnetic waves that 

propagate along magnetic field lines and are often observed in magnetized plasmas. Alfvén waves are 

transverse waves that propagate along magnetic field lines in a plasma. They are driven by the interaction 

between magnetic fields and charged particles. These waves play a crucial role in many natural and 

laboratory plasma phenomena. They are involved in processes such as energy transfer, particle 

acceleration, and wave-particle interactions. Magnetosonic waves are a type of plasma wave that 

propagates in a magnetized plasma. They are a combination of magnetic and acoustic waves and exhibit 

both compressional and transverse motion [6, 4]. 

A lot of studies have been done on magnetosonic waves. Toward the linear magnetosonic waves; M. 

Toida, Y. Ohsawa, and T. Jyounouchi have investigated the propagating modes in the linear 

magnetosonic waves and shown that the resulting modes are slow and fast modes [11]. But for the 

nonlinear magnetosonic waves; Maruyama, K., Bessho, N., & Ohsawa have studied the interactions of 

non-thermal energetic ions with nonlinear magnetosonic waves by means of a one-dimensional (one 

space coordinate and three velocity components), relativistic, electromagnetic particle simulation code 

with full ion and electron dynamics [1]. Mushtaq, A., & Shah, H. A. have discussed obliquely 

propagating magnetosonic waves in an external magnetic field in electron-ion-positron plasma and 

discussed the linear approximation for the fast and the slow modes [2]. In a two-ion-species plasma, the 

magnetosonic wave is divided into two modes; the low-frequency mode and the high-frequency mode [9, 

10]. The low-frequency mode is of the ion-ion hybrid resonance frequency, while the high-frequency 

mode is of the lower hybrid resonance frequency [5]. Recently, Masood, W., Shah, H. A., Mushtaq, A., & 

Salimullah, M. have investigated the linear and nonlinear properties of two-dimensional oblique 

propagation of dust magnetosonic waves [3]. 

The study of magnetohydrodynamics (MHD) plays a crucial role in understanding the behavior of 

plasmas in various astrophysical and laboratory environments. In particular, investigating linear 

magnetosonic waves has proven to be a fundamental aspect of MHD research. By considering the 

presence of multiple ion species within a plasma, this paper aims to present a comprehensive model that 

accurately describes the linear magnetosonic wave propagation in such systems. This work is organized 

as follows; the following section (2), explains the mathematical model. Section (3) discusses the 

numerical results and the parametric analysis of the propagating modes by changing the magnetic field B 

and the fluid density n.  

2.  Basic Equations 
 

Assuming a linear magnetosonic wave propagates perpendicular to the magnetic field through a 

compressible, collisionless homogeneous plasma medium. The medium is composed of two positive ions 

(a and b) and electrons  . The electric field  , the magnetic field B, and the wavevector k of the 

propagating magnetosonic waves are defined as follows, respectively,     ̂,           ̂ ,     ̂ 
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, where the subscripts 0,1 are the unperturbed and perturbed quantities, respectively. The governing 

equations are the fluid equation of motion, which are defined as follows, 

                                 ,B×u+Enq=
t

u
nm jjj

j

jj
∂

∂
                                               (1) 

where j  stands for 
thj  species(ions and electrons ), ba=j , and jme.  and jq  are the masses and the 

charges of the species j . jn  and ju  represent the density and the velocity of the 
thj  species, 

respectively. The right-hand side is the Lorentz force. Equation (1) is coupled with the following           

Maxwell’s equations. 

                                                                 ,
t

B
=E×

∂

∂
∇                                                  (2) 

  

 

                          (3) 

 

where 0  and 0μ  are the electric permittivity and the magnetic permeability of free space. The first 

term in Eq. (3) is 
10J jj

j

joo unqμ=μ   which represents the current density, while the second term 

t

E
μ

∂

∂
00   is the displacement current density. Equation (3) can be rewritten as 

                                        .
t

E
μ+unqμ=B× jj

j

j
∂

∂
∇ 00100                                            (4) 

The linearized forms of Eq. (1) , in x- and y-directions, are: 

                                                
     

  
                                                                     (5)                                     

                         
     

  
                                                                (6)  

 

The linear analysis is assumed in one dimension, where k is in the y-direction. The dependent 

variables are adopted as 

                                                         
 

 

 

 x.eJ=J

x,eE=E

z,eB+zB=B

,e+=

ωtkyi

ωtkyi

ωtkyi

ωtkyi

jjj

1

1

10

10 nnn                                                (7) 

Where ω  is the frequency of the propagating wave, while k  is the wavenumber of this wave. Taking 

the curl of Eq. (2), then substituting into Eq. (4), we get 

                                                         .unq
iω

=Ekcω jj

j

j 10

0

222 


                                    (11) 

Linearizing Eq. (11), we get 

                                                     .nq
iω

=kcω xjj

j

jx 10

0

222 uE 


                                   (12) 

From Eqs.(5) and (6), we get the following expression for the species’ velocity in x-direction 

,
t

E
μ+Jμ=B×

∂

∂
∇ 000

 (8) 

 (9) 

(10) 
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Substituting Eq. (13) into Eq. (12), we obtain the linear dispersion relation as: 

                                                        ,=
ωω

ωΩ
kcω

j cj

pj
0

-
- -

22

22

222














                                     (14) 

where pjΩ  is the plasma frequency of the 
thj  species which is defined as   2/1

0

2 / jjpj mne=Ω   and 

cjω  is the 
thj  species cyclotron frequency that is given by jcj meB=ω / . Reformulating Eq (14)  into a 

polynomial form, we get 

                                                  ,=C+ωC+ωC+ωC+ωC 00

2

2

4

4

6

6

8

8                                   (15) 

where 820 CCC ,...,,  are coefficients of the ω  and they are defined as follow, 
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3. Numerical Solution and Discusion 

In this work, we study the linear magnetosonic waves propagating in a two-ion-plasma medium. This 

model could be applied to the observed linear magnetosonic waves on Mars [7]. Linear magnetosonic 

waves have been observed in the Martian magnetosphere that propagate in the dayside ionosphere at an 

altitude of about 535.7 km and solar zenith angle (SZA) of about 77.8  [8] The medium is composed of 

two ions; oxygen 
+O , di-oxygen 

+

2O  and electrons   . At the region of observation, the magnetic field 

strength 22nT≈B , and the densities of the ions are;   3-6 m1020-10n ×=+O
, 

  3 -6

2

m1060-20n ×=+O
 . 

Solving the polynomial Eq.(15) gives 8 roots; half of them propagate in the forward (+ve) direction, and 

the other half propagates in the backward (-ve) direction, which means that we have a mirror mode comes 

from the magnetic field. Each root indicates a special mode in the plasma. 
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Figure (1) depicts the propagating modes in our medium. These modes depend on the type of the ions, 

which will be cleared below. 

 

Figure 1: Depicts the propagating modes for each root: (a) 
+

2O  species, (b) O
+
 species, (c) e

−
 species, (d) 

field mode. At the upper ionosphere of Mars, which has the magnetic field B ≈ 22 nT and the number density for 

each species are +O
2

n = 60 × 10
6
 m

−3
 and +O

n = 20 × 10
6
 m

−3
. 

 

a. 
+

O2  ion modes From Fig (1a), we see that the propagating modes produced by 
+O2  ion fluid are 

divided into two parts. A mode that propagates at low k (   15 m1030 ×=k ) until it reaches 

ck  ( ck  is the wavenumber at which the magnetized mode disappears and the propagating mode 

becomes ion cyclotron mode for the higher wavenumber k ). The mode with ck<k  is Alfven 

mode. We found that the propagating mode satisfies this dispersion relation proving that this is an 

Alfven mode. Then, as the wavenumber k  increases the propagating mode saturates at the 
+

O2  ion 

cyclotron frequency which means that the 
+

O2  ion cyclotron mode becomes dominant after ck . 

This mode propagates at the cyclotron frequency of the 
+

O2  ion, i.e at 
 

0.06629
2

=ω
oc

 Hz . 

b. 
+O and     species modes                                                                                                              

From Figs. (1b, 1c), we notice that the propagating modes in each ion fluid are also divided into 

two parts. At low ck<k  the propagating mode is a Whistler mode. Increasing the wavenumber 
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ck>k , each ion fluid has a propagating wave at the ion cyclotron frequency. Hence, it is called 

the ion cyclotron frequency mode. Each species saturates at the following frequencies; 

 
0.06629

2

=ω
oc

 Hz ,   1.32331=ω oc  Hz ,   3863.89=ω ec  Hz . 

 

c. The field mode 

         Fig (1d) indicates that the propagating mode is the magnetized analog of Langmuir mode. 

 
As the plasma parameters can affect the behavior of the existing modes. Here, we study the effects of 

each plasma parameter (the magnetic field B, and the density jn ) on the propagating modes for each 

species. Figure (2) introduces the effects of varying the magnetic field on the propagating waves on 

different ion fluids. It is noticed that varying the magnetic field B results in shiftiness of the saturation 

frequency (i.e. the ion cyclotron frequency) of the propagating wave, and of the critical wavenumber ck  

after which the ion cyclotron mode becomes dominant. Verifying that decreasing the magnetic field B 

turns the wave into an ion cyclotron wave, i.e. disappearing the other propagating magnetized mode 

(Alfven or Whistler mode). Here, we study in detail the effect of changing the magnetic field B on each 

ion fluid as follows, 

 

 

a. 
+

O2  ion mode 

From Fig (2a), we see that increasing the magnetic field gives similar propagating modes that are 
observed at higher frequencies because of the increase of the saturation frequency (carbon-
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dioxide cyclotron frequency 
 2

Oc
ω ). That’s why, we observe that the saturation mode (ion 

cyclotron mode) becomes noticeable at higher frequencies by increasing B. Also, the magnetized 
mode (Alfven mode) lasts for higher wavenumber k, i.e. at lower wavelengths. Therefore, we 

can say that the Alfven mode propagates at smaller wavelengths λ  and could last for higher 
frequencies by increasing the magnetic field. 
 

b. +O and     species modes 
From Figs (2b) and (2c), it is noticed that the saturation frequency (ion cyclotron frequency) 

occurs at higher cω  by increasing the magnetic field B. The propagating Whistler mode lasts for 

higher frequency bands and larger wavenumber k . Hence, we can say that the Whistler mode 
disappears by decreasing the magnetic field B as expected. This effect is the same for oxygen 

ions +O  and electrons    . 
 

c.  The field mode 
This mode results from the displacement current which depends on the densities of the ions. 
That’s why, it isn’t affected by changing the magnetic field B at all. From Fig (2d), we see that the 
magnetized analog of Langmuir mode doesn’t suffer any changes by varying the magnetic field 
B. 

 

Figure (3) introduces the effects of varying the density of the fluid species on the propagating modes. 

This shows that the ion cyclotron frequency cjω , at which the ion cyclotron mode propagates, isn’t 

affected by changing the density of the species j . It just influences the Alfven and the Whistler modes 

making them last for higher wavenumbers k. 
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a. 
+

O2  ion 

From Fig.(3a), we see that the saturation occurs at larger wavenumber k  by increasing the 

density 
2

On  (i.e, jc nk  ∝ ). But for the ion cyclotron mode, it has nothing related to the density 

except for retarding its observation at higher k, i.e., smaller wavelength λ . 

b. +O and     species modes 

From Fig.(3b and 3c), we notice that the saturation frequency cjω  is not affected by varying the 

density of the species jn . The magnetized mode (Whistler mode) begins to be observed at higher 

wavenumber k  and lasts for a greater frequency ω  by increasing the density of the ion fluid jn . 

c.  The field mode  

But for the magnetized Langmuir mode, it’s obvious from Fig (3d) that the waves propagate at 

larger frequencies by increasing the whole density of the plasma medium. 

 

4. CONCLUSION REMAEKS 

In this work, we have carried out a linear analysis of magnetosonic waves observed in the upper 

ionosphere of Mars. This medium is composed of two cold ion species; oxygen 
+O  and di-oxygen 

+O2  

and the neutralizing electrons   . Our analysis has shown that every ion fluid has propagating waves with 

two different modes; one of them is excited due to the magnetic field B. This mode for the ion species 
+O2  is an Alfven mode. While for the other species, it’s a Whistler mode. Both modes appear only when 

there is a magnetic field B. These magnetized modes only propagate at low wavenumber ck<k . At 

larger wavenumbers ck>k , the dominant mode at all ion fluids, is the ion cyclotron mode. This mode 

propagates at the cyclotron frequency of each species cjω . We also have investigated the influence of 

different plasma parameters (magnetic field B, density n) on the propagating modes. It’s shown that both 

parameters don’t excite any new modes within the ion fluids. Varying the magnetic field, results in 

shiftiness of the cyclotron frequency and the critical wavenumber ck  after which the propagating mode 

becomes the ion cyclotron mode. Therefore, increasing the magnetic field B makes the magnetized modes 

propagate for higher ω  and last for larger k . But for the density variations, we have seen that increasing 

the number density for each species results in an increase in the critical wavenumber ck , i.e. increase in 

the frequency range of the propagating Alfven or Whistler-mode. 
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