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ABSTRACT 

This study presents a modified seventh-order weighted essentially non-oscillatory (WENO) finite 

difference scheme based on the numerical perturbation method established in [1]. The perturbed 

candidate polynomials of the seventh-order WENO scheme are evolved using a perturbational polynomial 

of the grid spacing, which modifies the polynomial approximation used for the classical WENO7-Z 

reconstruction on each candidate stencil. Furthermore, it is found that the new weighted scheme 

constructed with the new perturbed polynomials candidate has necessary and sufficient conditions for 

seventh-order convergence that are one order lower than those used by Henrick for the classic WENO 

scheme with seventh-order convergence, as presented in [2].  As a result, even at critical locations, the 

new seventh-order WENO scheme, which uses the perturbed polynomials and the same weights as the 

WENO7-Z scheme as demonstrated in [3], is able to satisfy the necessary and sufficient condition for 

seventh-order convergence. 

The new WENO7-P scheme reduces numerical dissipation in WENO schemes. Numerical examples 

verify the new scheme's accuracy, low dissipation, and robustness. 
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           Hyperbolic Conservation Laws, WENO Scheme, Perturbational Approach, Seventh-Order 
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ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ   

1. INTRODUCTION 

Hyperbolic conservation law systems perform a key part in various practical problems including 

weather prediction, rarefied,  gas dynamics, traffic flow models, and numerous other scopes in 
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engineering and sciences. Thus, solving these sorts of problems by numerical methods,  discontinuities 

can arise in the solution of these problems. 

So it's important to use methods that are non-oscillatory near discontinuities and attain high-order 

accuracy in the smooth regions.  Harten [4] established the total variation diminishing (TVD) methods, 

which are suitable in this regard. After many attempts,  Liu et al. [5] proposed the first weighted 

essentially non-oscillatory (WENO) scheme which is recognized for the solution of hyperbolic 

conservation laws, particularly for problems involving complex structures. The essentially non-oscillatory 

(ENO) property of the WENO method near discontinuities has led to its widespread use, as has the 

WENO method's high and consistent order accuracy in smooth regions to solve the compressible flow 

cases.  As a result, Jiang and Shu [6] formed a traditional smoothness indicator and generalized the 

WENO schemes structure. Henrick [2] provided a comprehensive investigation of the correctness of Jiang 

and Shu's fifth-order WENO scheme (WENO-JS) and concluded that it does not attain the ideal order of 

critical points when the solution's first derivative is concerned. At the same time, They determined what 

weights are required for fifth-order convergence and developed a new WENO scheme that uses a 

mapping function to reevaluate the weights of the WENO-JS scheme in order to meet the necessary and 

sufficient condition (SC) for seventh-order convergence.  The SC then guided WENO system weights. 

 

According to the authors' research, the WENO method's numerical results are sensitive to a user-

adjustable parameter [7] and can satisfy the SC at critical points of the smooth solution. According to [8], 

numerous second and third-order global smoothness indicators have been created (even up to eighth-

order). Clearly, even at points in which the first derivative equal zero of the smooth solution, these 

indicators can retrain the seventh order. However, when solving problems involving shock waves, 

numerical results showed that these higher-order global smoothness indicators may cause oscillations [9].  

Conversely, employing the parameter ε prevents the denominator from being equal to zero. Yet, it is 

remarkable that ε is so critical for altering the solution's accurate sequence. Consequently, a large number 

of researchers [10, 11, 12] have shown that to achieve the     -order at critical points, the parameter ε 

used to figure out the weights of WENO schemes can be seen as a function of the mesh size ∆x. 

However, it is possible to detect that the solutions of those WENO schemes lose the scale in variance 

property,  especially if the reference length is small, in which case ∆x will be large and numerical 

oscillations may occur. 

 

 The goal is to achieve the seventh-order accuracy at critical points while keeping dissipation and 

ENO properties to a minimum in the nearby discontinuities. 

Therefore, a weighted scheme to reduce seventh-order convergence constraints is examined in this paper. 

Gao [13] first introduced the numerical perturbation method (NPM), which solves the convection-

diffusion equation. The numerical perturbation method is accomplished by multiplying a perturbational 

polynomial (a power series of grid intervals) and removing the trimmed error terms from the adapted 

differential equation to achieve the perturbational polynomial’s coefficients. NPM improves scheme 

accuracy without adding grid points. Using the first-order upwind scheme, Shen [14] created a second-

order perturbational finite difference method for the hyperbolic conservation laws. The NPM was 

extended to the finite volume method by Gao [15], then, Li [16] created a third-order ENO scheme with a 

higher-order coefficient that utilized the second-order scheme. Yu [17] recently proposed a finite-

difference advection system with symplectic perturbations that can reduce phase error. 

The WENO scheme's perturbed versions of candidate polynomials are employed to create a new 

weighted scheme.  In addition, this study generalizes and proves a conservative scheme is accurate 

according to the corollary presented in other studies [18, 19]. Since the perturbed polynomials are of a 
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higher order than their counterparts, we can combine the NPM with the corollary to reduce the required 

condition for seventh-order convergence of a seventh-order WENO scheme. At critical points in smooth 

regions, the perturbational WENO (WENO7-P) scheme, which uses the weights from the WENO7-Z [ 

28]  scheme and the perturbed polynomials, can achieve seventh-order accuracy. As for the other parts of 

the paper, they are as follows: In section 2 the numerical technique is discussed. In Section 3, perturbed 

candidate polynomials are used to develop a perturbational WENO scheme.  In section 4, we discuss the 

Linear strong-stability-preserving Runge-Kutta time  discretization method (ℓSSPRK). In section 5, we 

will discuss the Central-upwind flux [20].  Many numerical examples are shown in Section 6 to 

demonstrate the robustness and low dissipation  accuracy of the proposed method. 

2 NUMERICAL  METHODS 
 

The following describes the approximations of systems of hyperbolic conservation laws 

 

 
          
             

 (1) 

 

with initial and boundary conditions. In this        is the vector of unknown conservative variables and 

     is the physical flux vector. This paper only considers uniform grids and uses the following notation: 

let             
  

 

 

    
 

 
                

        
    and the cell      

  
 

 

  
  

 

 

    where    and 

    are small spatial and time scales. Consider a control volume in x-space   
  

 

 

  
  

 

 

 . Integrating (1) 

with respect to   over the volume and keeping the time variable continuous. A system of ordinary 

differential equations yields the semi-discrete finite volume scheme (ODEs) 
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 where       is the space average of the solution in the cell    at time    and  
  

 

 

 is the numerical flux at 

   
  

 

 

 and time  . 

  The computational domain                      is highly regarded in general. 

 Due to the fact that the solutions of eq. (1) can exhibit discontinuities (shocks) for smooth initial data, 

cell-averaged discrete quantities are used. In the interval     centered around   ,    
   is an approximation 

to the cell-average solution in the cell      
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      (3) 

  Regarding that, the cell average at time      
  are defined from        the point values of the function 

reconstruct are redefined        through appropriate nonlinear polynomial interpolation                 

The WENO reconstruction is adopted in the paper. At each cell appearance  
  

 

 

  the reconstruction 

generates two distinct values for the function     , the left state values and the right state value. 

Therefore, eq.(1) transforms into a sequence of local Riemann Problems (RP)        ,       eq.(1) 

conditional upon the initial condition 
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 (4) 

 

In the current WENO scheme, the numerical solution of eq.(2) is advanced in time using the high-order 

linear strong-stability-preserving Runge-Kutta (       ) [21]. The flux  
  

 

 

 at  
  

 

 

 is described as a 

monotone function of the right and left extrapolated values  
  

 

 

       
  

 

 

  respectively :  
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2.1  classical seventh-order WENO Scheme 

 

  The polynomial as offered in [22, 3]  
  

 

 

  of a WENO scheme of seventh order can be expressed as 
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   , which is a nonlinear weight, as shown in [3] .  
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 Where    are the ideal weights, which equal    
 

  
        

  

  
        

  

  
        

 

  
.  

    is a global smoothness indicator equal |     |, and    is the smoothness indicator on the substencil 

  .  Jiang and Shu [6] calculate a classical formula for     . 
the accessible format of    for the 7th-order WENO scheme      that may be proved as  

 

   
 

   
          

            
             

                

         
                                                   

                                     

   
 

   
          

            
          

                

         
                                               

                                   

   
 

   
          

          
            

                  

          
                                                  

                                 

   
 

   
         

             
            

                  

          
                                              

                                     

 (9) 

 Note: The right value  
  

 

 

  is acquired through symmetry. 

 From [3], the seventh-order weighted scheme necessary and sufficient conditions for convergence at the 

seventh-order are found as follows.: 

  
    

        , (10) 

  
             (11) 

  Thus the sufficient condition can be as  
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           . (12) 

  

2.2  The 5th-order perturbational WENO scheme 

  Here, the fifth-order perturbational WENO schemes in [18] and [19] are reviewed. In this 

subsection, the research proposed the numerical perturbation technique to constitute a WENO scheme. 

The perturbed scheme will decrease the sufficient condition constraint from the third order to the second 

order constraint, i.e.  

   
             (13) 

The traditional fifth-order WENO scheme employs a 5-points stencil,  hereafter referred to as    , which 

is subdivided into three other 3-points stencils              in which the numerical polynomial  
  

 

 

 of a 

5th-order WENO scheme can be expressed as  
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                     (14) 

 where  ̂
  

 

 

  is the polynomial on the sub-stencil                                       as cited 

in[3]. 

The explicit form of the perturbed function can change the order from second to third order. Hence, it can 

be derived as follows [1].  
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 where    
  

 
    

 

  
    

  

  
.  For more details , see [1].  

 

3  THE CONSTRUCTION OF THE SEVEN-ORDER PERTURBATIONAL WENO SCHEME 

 

The present research suggests a WENO scheme be built using a numerical perturbational approach. 

The new technique may lessen the sufficient condition's constraint from the fourth order to the third 

order, i.e.  

   
             (16) 

  

3.1  The development of perturbed candidate polynomials 

  The Taylor expansions of    in the equation. (6) at   
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From [23] Shu and Osher found the presence of constants                . As:  
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then this scheme has been further defined to be spatially accurate to the (2m)th order.  

For illustration    
  

  
    

 

    
   . 

 In the relations of coefficients, which Shu offered, are     in (18).  

 

 ∑   
   

   

                
                         (19) 

These equations concluded the seventh-order WENO scheme’s accuracy. In addition, they can construct 

another scheme.  

More details review the corollary, presented in [1]. 
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According to the corollary, Eq.(17) shows that the polynomial candidates  ̂
  

 

 

  are fourth-order accurate. 

Logically, whether or not the requirements of the weights in Equation (2.1) may be relaxed if all these 

candidate polynomials are enhanced to fifth-order..  

Therefore, The grid spacing perturbational polynomial    is used as a basis. 
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multiply the perturbed polynomials  ̂
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 Based on the corollary in [1], if the following equation holds 
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 Therefore, it is possible at least in theory (let   
  

 

 

  ) to find out that   

      (24) 

      
 

    
    

   

   |
  

 

 

   
  

 

 

, (25) 

  Supposing  ̂
  

 

 

   
  

 

 

        Eq. (17).  An approximation of    to a high order can be shown as 
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 It is clear that, there is  

  ̃            (27) 

 Thus, the perturbed seventh-order function is obtained as follows:  
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On stencil                         
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By substituting Eq.(29) into Eq. (28), the clear and specific structure of the perturbed function could be 

shown as  
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3.2  The weighted form of the WENO7-P Scheme Reconstruction 

  Employing the perturbed polynomial  ̃
  

 

 

  . According to Equation (30), the numerical function 

of a newly weighted scheme is as following:  
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where                          correspond to the same weights in WENO7-Z scheme [28] in equ (8). 

Then, the conditions that must be achieved for eq.(34) to converge to the seventh order will be worked 

out. Directly employing the expansion form of ∑   
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  Eqs. (11-15) offered by Borges [3], we have 

as cited in [24].  
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Subtraction of the numerical function in Eq.(36)  
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The necessary and sufficient conditions for the    -order  weighted schemes, equation (33) are derived 

from equation (35). 

   
    

        , (36) 

   
           . (37) 

When the current necessary and sufficient conditions are compared to the ones derived from the classical 

WENO schemes, Eq. (15), it is found that the current conditions relax the weight requirements by one 

order. It is clear, the sufficient condition of the new seventh-order  scheme Eq. (34) may be derived as 

follows: 

   
           . (38) 

  

3.3  The concluding form of the WENO7-P Scheme reconstruction incorporating ENO 

property. 

The establish of Eq. (32) is formed using the WENO scheme's weighting technique; even so, as the 

term      
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Scheme Eq. (32) loses the ENO property if it is used in any perturbed candidate polynomial. 

 It is fortune that, the term      is independent of the classical function  ̂
  

 

 

. If a discontinuous solution is 

found, By reducing the effect of      ,  the scheme achieves the ENO property. This study suggests 

employing a tunable function to perform this task.. 

The new scheme's final function in terms of ENO property (WENO7-P) is 

 
 ̃
  

 

 

 ∑   
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 (                                           ) 
 (39) 

 In order for the function    to work, , it is necessary that 

        1. The value of   is a small,  if the stencil                     is a discontinuous stencil. 

        2.  The smoothness of stencil   , ensures that    has no impact on the accuracy of the convergence 

of eq.(32). 

As a result of Equation (38),  the second condition  will be satisfied and it can be expressed as 

             (40) 

 Here, we examine the  function  

      
  

       
    (41) 

 is recommended, where the new    is the global smoothness indicator 

    |                 | which its taylor expansion equals  

 |
    

   
              

  

 
            

   

  
                       |. (42) 

In Eq. (9), the indicators of local smoothness are      ,    is a small positive constant is provided, to 

ensure that the denominator does not equal zero. the function   can easily meet the design specifications 

1) and 3). 

The second right-hand term of Eq. (39) is an anti-dissipation term that approximates the fourth derivative 

of the polynomial p at j+1/2. Consequently, By using a different approach, the new scheme is able to 

decrease the numerical dissipation of the standard WENO scheme. It is noteworthy to mention that    is 

found that the optimal order cannot be attained in WENO scheme in the case that a large constant   is 

employed. However,          smaller values should be used so that the spurious oscillations are 

reduced. according to the sources [6, 2].  

 The sound solution of this case: a huge number of researchers adopted   as a mesh function    rather 

than using the same constant value as suggested in refs. [12, 10]. In order for the WENO-JS scheme to 

attain the ideal order, regardless of critical points, it was determined that for any design order         
  should be       , where   is unrelated  to   , the sufficient condition on   for the WENO-Z scheme 

to attain the ideal order irrespective of critical points was first introduced by Don and Borges in reference 

[10] in the form 

        , 

 where          is defined as 

            
   

 
 

 where               and       is the global ideal smoothness indicator. See references [12, 10] 

for more information.  

The seventh-order scheme, for example, the                       ( see in reference [10] table 

1 ). Therefore     that is,        
 

3.4  The theoretical analysis of the WENO7-P Scheme 

 The expansions of Taylor in Eq. (9) at    introduces  

    

{
 

 
                                     

     
  

  
                                 

   

   
                                   

 (43) 

 and the Taylor expansion of    in eq. (42) given by:  
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 (44) 
 
 When Eqs. (43) and (44) are substituted into Eq. (8), there is  

 
                                                                                                                                                      (45) 

The power parameter q in the definition of weights eq. (8) affects the convergence order of the seventh-

order WENO (WENO7-Z) scheme at critical points; for instance, the seventh-order accuracy if the power 

q takes the value of 1 and 3. 

 This   has an impact on the optimal order of convergence. Therefore     is employed in order to 

retrieve the accuracy of the optimal of the seventh-order in smooth regions such as the first order critical 

point as shown in eq. (45). 

 It is worth mentioning that     achieves the ideal order in smooth regions in isolation of the critical 

points. On the other hand,     achieves the ideal order including the critical points as shown in eq. 

(43), however, it raises dissipation. 

 In addition,     can satisfy the sufficient condition in the smooth region encompasses the seventh-

order, it makes no dissipation. 

Equation (42) demonstrates that the sufficient condition Eq. (38) for WENO7-P scheme seventh-order 

convergence is met. For this reason, the WENO7-P scheme maintains seventh-order accuracy even near 

critical points. For the purpose of enhancing the WENO7-Z scheme, a number of the high-order global 

smoothness indicators (GSI) have been presented. Following the above reasoning, if one were to adopt 

these high-order GSIs and check that the determined weights satisfied the sufficient condition Eq. (13) at 

critical points, then type schemes that correspond to WENO-Z would be seventh-order accurate. 

However, numerical results in the following section shows that the aforementioned high-order GSIs, 

when used in conjunction with the WENO7-P scheme (Eqs. (39), (41), and (42), can further reduce the 

numerical dissipation.. 

 

4  TIME DISCRETIZATION 

 
Equation (2) is a system of time-dependent ODEs that can be solved by any stable ODE solver that 

maintains the spatial accuracy of the scheme. Utilizing time discretizations of the same order as space 

discretization is actually advantageous.  

The current research uses the SSP for linear problems [25], the linear strong-stability-preserving Runge-

Kutta algorithm  SSPRK. Gottlieb's  SSPRK (m,m-1) method [25] is used in this paper. Its coefficients 

can be found recursively to the necessary accuracy. 

This paper uses Runge-Kutta techniques to solve an ODE system. 
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     , (46) 

 where      is an approximation to the derivative          in the differential equation eq. (1).  

 This  SSPRK         method is offered by:  
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 For the seventh order            are offered by  

      
 

  
      

 

 
      

 

 
      

 

  
             

 

  
             

 

   
  

 As for the general nonlinear problems, the   SSPRK         methods are not            no longer. 

 The stability condition for the above mentioned schemes is      . where            
   

  
   is the 

Constant number. Here   
  is the maximum propagation speed in    at time level n.  

 

5  THE CENTRAL-UPWIND FLUX 

 
The researchers recapitulate the derivation of the central-upwind flux given in [26].  

The one-dimensional hyperbolic conservation law system is considered..    

                       , (48) 

 its initial condition is  

             . (49) 

It is worth mentioning that        is the vector of unidentified conservative variables and      is the 

physical flux vector. 

 At first, the researchers reconstruct a conservative non-oscillatory piecewise polynomial interpolation 

           from   
  for each cell   . It is general that the vector-field polynomial is discontinuous at the 

cell interfaces,  
  

 

 

 and thus their evolution is locally defined through the solutions of generalized 

Riemann Problems. The dimension of matching Riemann fans is explained through the right and left-

sided local speeds of propagation  
  

 

 

   
 that can be calculated by  
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 with         being the eigenvalues of the Jacobian 
  

  
.  

Values on the right  
  

 

 

          
 

 

   and the left  
  

 

 

        
 

 

  of the piece-wise interpolant values 

      at the cell interface    
  

 

 

   are shown. 

    If the flux convexity adjustments near u (j+1/2)(R,L), then the formula eq.(50) is wrong in the 

nonconvex particular instance, and a more precise calculation of a (j+1/2)(R,L) is required. The speeds in 

eq. (50) can be calculated accurately under these conditions: 

 
 
  

 

 

     
    

  
 
 

     
  

 
 

    
               

  
 

 

     
    

  
 
 

     
  

 
 

    
         

  (51) 

when  
  

 

 

         
  

 

 

   
  

 

 

  . Look at [26] for further explanations. 

 The central upwind scheme, which is presented semi-discretely in [26], can be expressed as 

 
 

  
       

 

  
  

  
 

 

  
  

 

 

       . (52) 

In eq. (52), the numerical flux is denoted by 
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 ]  (53) 

 It's important to note that the accuracy of the reconstruction and the solution to the ordinary differential 

equation is used to determine the scheme's accuracy. 

 

6  NUMERICAL RESULTS 

The following schemes are considered:   

1.  WENO7-Z, is an enhanced version of the 7th-order WENO scheme  offered in [27]. 

2 . WENO7-B is the WENO scheme of the seventh-order, described in [22]. 

3.  WENO7-P refers to the seventh order WENO scheme provided here.  

For linear problems, we use the   SSPRK         method for time integration, although for nonlinear 

problems, we switch to the SSPRK method) schemes eqs. (5,4). In the case of linear issues, the value of 

       is employed for the traditional WENO schemes, whereas the value           is utilised in the 

various schemes with the traditional WENO scheme ideally and choose        . As for the nonlinear 

examples, the researchers employ the simulation time as         , observe [3]. According to the 

above-mentioned problems, the symbol shows the numerical solution while the full line represents the 

analytical solution. 

 

6.1  Critical point convergence 

 Example 1: 
The scheme’s accuracy at the critical points is checked in the following instants. 

For the given function  

             . (54) 

      We create a comparison between the    error where (         |         |  and the 

convergence rate of the various schemes. This function’s          and          explains the 

scheme's inaccuracy. The errors and the rates of convergence of the various schemes at the critical point x 

= 0 are presented in table 1. The WENO7-Z and WENO7-P schemes achieve the seventh-order, whereas 

the WENO7-B scheme converges to the fourth-order, as shown in the same table. Furthermore in the 

WENO7-P scheme, the errors are nearly classified with those of WENO7-Z scheme or even in a more 

accurate way at some grid sizes.   

 

N WENO7-B WENO7-Z WENO7-P 

     error    order    error   order    error   order 

1600 6.22E-11  1.96E-14  1.86E-14  
3200 3.86E-12 4.01 1.46E-16 7.07 1.39E-16 7.06 
6400 2.41E-13 4.00 1.08E-18 7.08 1.03E-18 7.08 

12800 1.51E-14 3.99 7.83E-21 7.11 7.66E-21 7.07 

  
Table  1:  Convergence Study 

    

6.2   Tests of Accuracy 

 Example 2: 
  According to the equation of the transport    

                       (55) 

 Using the periodic initial data  

               . (56) 

On the interval         and periodic boundary conditions. At t=1, we compute the solution. Observe that, 

as time progresses, the solution is always smooth, and thus this example is used to check the rate at which 

different schemes converge. The    errors and the CPU usage at     are presented in table (2). 

Observations indicate that all schemes attain the intended order of accuracy, with WENO7-P being the 

most accurate in terms of both sizes of the error and the accuracy order. Currently, the scheme's 

effectiveness is compared to that of others. According to table (2), the CPU time required by the 
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WENO7-P scheme on a given mesh is approximately 84% of that required by the WENO7-B scheme and 

66% of it required by the WENO7-Z scheme. Figure (1) offers the errors versus CPU time for the three 

different schemes. Obviously, from figure (1), the result explains that WENO7-P scheme requires the 

smallest CPU time to attain the same accuracy compared with different schemes. Consequently WENO7-

P scheme is more efficient than the other schemes.   

 
Method Mesh   error   order CPU Time 

WENO7-B 10 2.54E-4  4.20E-2 

 20 1.89E-6 7.07 1.57E-1 

 40 1.41E-8 7.07 6.11E-1 

 80 1.06E-10 7.06 2.37E+0 

 160 7.94E-13 7.06 88.94E+0 

WENO7-P 10 4.45E-5  5.36E-2 

 20 3.36E-7 7.08 1.98E-1 

 40 2.49E-9 7.07 7.21E-1 

 80 1.85E-11 7.07 2.78E+0 

 160 1.37E-13 7.07 1.05E+1 

WENO7-Z 10 7.76E-6  3.55E-2 

 20 5.75E-8 7.08 1.32E-1 

 40 4.28E-10 7.07 5.02E-1 

 80 3.18E-12 7.07 1.87E+0 

 160 2.36E-14 7.07 7.01E+0 

   
Table  2:  Convergence study  

 

 
   

 

Figure  1: CPU time and    curve  
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6.3  Examples of shocks 

 Example 3: 
 Considering the linear equation (55) with this initial condition the correct solutions by the numerical 

methods will be difficult.  

        

{
 
 

 
 

 

 
                                        

              
  |           |         
 

 
                                       

            

 (57) 

 where                             √                ,and periodic boundary 

conditions. The values of the constants are                           and              . 

At time t = 8 with 200 cells were used to calculate the answers. The results of the WENO7-P scheme are 

shown in Figure (2). The results with the scheme WENO7-B and WENO7-Z are compared in figures (2) 

and (3) in [28], Notice that the WENO7-P performs significantly better than the competition in terms of 

capturing shocks and simulating the top of the semi-ellipse. The errors and CPU time at time t=8 are 

displayed in table (3). On a given mesh, the WENO7-P scheme uses about 56% less CPU time than the 

WENO7-B and WENO7-Z schemes combined. Figure (3) presents the    errors versus CPU time. 

Clearly, from figure (3), that less CPU time is costed by the WENO7-P scheme to achieve the same 

accuracy as by the other schemes for this issue. So WENO7-P is more efficient.  

  

   N  WENO7-P WENO7-B WENO7-Z 

     error   order CPU   error   order CPU   error    order CPU 

 200  7.87E-5  2.13E+0 4.69E-4  3.57E+0 3.59E-4  3.92E+0 

400 3.55E-5 1.15 8.68E+0 2.33E-4 1.00 1.51E+1 1.54E-4 1.22 1.52E+1 

800 1.71E-5 1.05 3.37E+1 1.17E-4 0.99 6.02E+1 7.63E-5 1.014 5.95E+1 

1600 8.37E-6 1.03 1.28E+2 5.71E-5 1.03 2.39E+2 3.73E-5 1.033 2.31E+2 
 

Table  3:  Convergence Study  

 

 

Figure  2:  Using WENO7-P scheme at     
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Figure  3: CPU time and    curve 

           
 Example 4. Burgers (nonlinear equation): 
 The Burgers equation's numerical solution 

     
 

 
                  , (58) 

 along the initial condition  

                     (59) 

The results are shown in Figures (4) and (5) at   
   

 
 (after the formation of the shock) utilising the 

WENO7-P and WENO7-Z schemes with a total of N=80 cells respectively. Clearly,  the WENO7-P 

results are nearly clear for the analytical solutions. Drawing a comparison with the performances of all 

methods, The CPU-   error curves are shown in figure (6). It is clear that WENO7-P is more efficient 

than the others. 

 
Figure  4:  Using WENO7-P scheme 
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Figure  5:  Using WENO7-Z scheme 

    

 
   

Figure  6: CPU time and    curve  
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6.4  Problem with non-convex flux 

 Example 5 )Buckley-Leverett Equation) 
 This instance demonstrates the scheme's performance when employed in the solution of the non-convex 

fluxes problems.    

     
   

          
      (60) 

 Where the initial condition  

        {
           
             (61) 

The estimated numerical solution is t=0.4. Its exact solution is a mixture of shock, rarefaction, and contact 

discontinuity. We observe that some-order schemes do not converge to the proper solution of the entropy 

for this problem. The numerical results are displayed of WENO7-Z and WENO7-P schemes respectively 

on the mesh of    cells in figures (7,8). Obviously, the two different schemes achieve the correct entropy 

solution with the ideal resolutions for all the solution's major features. The performances of the schemes 

are displayed (CPU-  error curves in Figure (9). WENO7-P is more effective. 
 

 
 

Figure  7:  Using WENO7-Z scheme 
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Figure  8:  Using WENO7-P scheme 

     

 
Figure  9:   CPU time and    curve  

    

  
6.5  Systems of equations 

Regarding the system of gas dynamic Euler equations, we take into account the following: 

             (62) 

Whereas,             and                       , where        are the density, 

velocity,  pressure, and   
 

 
   

 

     
  is the total energy and   is the ratio of specific heat, which is 

assumed to be 1.4 here. 

 

Example 6. Lax problem: 
  Equation (62) with two states, left (L) and right (R), as initial conditions  
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                                                                        (63) 

 it is found discontinuity at       at       .  Employing 100 grid points. The results at t=0.13  of the 

WENO7-P scheme are shown in Figure (10). In comparison to the revised results in [29], the scheme in 

[29] produced non-physical oscillations close to discontinuities, particularly, close-contact  discontinuity, 

whereas the revised WENO7-P results are more accurate and free of oscillations. Furthermore, in the 

comparison with WENO7-B and WENO7-Z schemes [28], It is obvious that the perturbation technique is 

effective and has high accuracy.  Figure (11) shows CPU-   error curves.  

 

 

 
 

Figure  10: Using WENO7-P scheme  

    

 
 

Figure  11:  CPU time and    curve  

               
  
Example 7. Shock wave reflection: 
Consider a shock is traveling at Mach 3 interacting with density sine waves according to Euler equations 
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(62); in this case, the shock's initial condition. 

 
                                                             

                                                  
 (64) 

 Physical oscillations in the flow require numerical solutions. 

 At time interval t=1.8, the solution is found. Figure (12) is a curve displaying the density as calculated by 

the perturbational technique employing  200 grid points. By making the Comparison between the results 

generated by WENO7-P with the results of [22, 28], Notice that WENO7-P schemes yield accurate 

results. To Compare results with other methods, CPU-   error curves are shown in figure (13). It is noted 

that WENO7-P scheme is more efficient.  

 
 

Figure  12:  Using WENO7-P scheme  

 
 

Figure  13:  Using WENO7-P scheme 

     
 Example 8. The problem of Blast Wave  
     This problem has three initial states [30]. 

        {

                           
                                
                            

 (65) 

 with  . Both boundaries have reflective boundary conditions. This problem is solved by the propagation 
of powerful shock waves into regions with low pressure, it contains extremely powerful discontinuities 
as a benchmark and therefore is a suitable check of schemes. Figure (14) displays the numerical results 
of this complex problem's density. These results  were collected from 200 cells at t = 0.038. In particular, 
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the peaks of the density have nearly the accurate value, demonstrating that this sharp resolution of the 

complex and difficult double blast problem is possible with the new scheme 

 

.  
 

Figure  14:  Using WENO7-P scheme 
 

 
6.6  Euler equations in two dimensions 

 
The Euler equations in two dimensions will investigate the WENO7-P scheme’s performances of as 

follows  

              , (66) 
where  

             ,                            ,    

                           , and                         
 

  
 

where  is the density, P is the pressure, S is the entropy, e is the specific total energy of the fluid, u is the 

component of x-axis of velocity and v is the component of y-axis of the velocity.   is the ratio of specific 

heat and it is assumed that      . 

 
 Example 9. The problem of the Double-Mach reflection  

 The above-mentioned Euler equations (66) on the             are shown in this example to verify the 

high resolution and numerical stability of the WENO7-P scheme. At the bottom of the domain beginning 

with   
 

 
. Positioned using the exact post-shock condition, a right-moving Mach 10 shock makes     

with the x-axis at        
 

 
   . The bottom boundary is imposed with the exact post-shock condition, 

while the rest of the x-axis is reflective. Data is used to describe the Mach 10 shock's exact motion at the 

computational domain's top [30]. It can be seen in Fig. 15 that our scheme generates more instability 

micro-structure solutions in a shorter amount of time (t=0.2). 
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Figure  15:  Density contours for the Example 9 by WENO7-P with 30 contour lines with  a range from 2 

to 22 

    

 
7.  CONCLUSION 

 
Depending on the perturbed polynomials, this research proposes a perturbational weighted essentially 

non-oscillatory (WENO7-P) scheme. Compared to classical the seventh-order WENO schemes 

introduced by Henrick et al. and Balsara et al., this one is one order lower, and is less dissipative and 

dispersive than the WENO scheme. The theoretical analysis and numerical results show that using the 

same weights as in the WENO7-Z scheme can recover 7th-order at the critical points. According to 

various results, the WENO7-P scheme is less dissipative and dispersive than the WENO scheme. 

Future research should focus on improving the higher-order finite-difference traditional WENO schemes. 
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