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ABSTRACT 

 

The Extended Korteweg de-Vries equation solved by using a finite element algorithm 

based on Bubnov-Galerkin’s method using quintic B-spline functions. Crank–Nicolson 

approximation in time has been used for time discretezation.The method can faithfully simulate 

the physics of the Extended Korteweg de-Vries equation, according to simulations. 
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1. INTRODUCTION 

 

Early in 1877, Joseph Valentin Boussinesq introduced the KdV equation. Then in 1895, 

Diederik Korteweg and Gustav de Vries have just been rediscovered and formed by  

 

                                              (1) 

 

      where        is a field variable,   and   are positive constants, and   and   denote time 

and space differentiation, respectively. 

 

The KdV Eq.(1) is a third-order one-dimensional nonlinear partial differential equation that 

is used in nonlinear dispersive wave analysis. The equation was constructed to describe the 

one-dimensional behaviour of solitary shallow water waves.  

 

There are many forms for KdVequation like Rosenau– KdV [1], extended KdV [2], 

generalized KdV [3], Rosenau KdV-RLW [4], KdV-Burger [5], the coupled Schrödinger–KdV 

equation [6], ect.. 

  

The KdV equation arises as an approximate equation governing weakly nonlinear long 

waves when terms up to the second order in the (small) wave amplitude are retained and when the 

weakly nonlinear and weakly dispersive terms are in balance. If effects of higher order are of interest 

then retention of terms up to the third order in the (small) wave amplitude leads to the extended KdV 

equation. [7] 
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We chose Extended Kdv equation as one type of KdV equation, which in the form 
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        (2) 

 

where        is a field variable,   ,   and β are positive constants, and   and   denote 

time and space differentiation, respectively 
 
The extended Korteweg-de Vries equation, which includes terms of third order in wave 

amplitude, is derived in two ways; the first is an extension of the derivation of Whitham (1974) of 

the Korteweg-de Vries equation from the water-wave equations and the second is from the 

Lagrangian for the water-wave equations derived by Luke (1967). Since a Lagrangian for the 

extended Korteweg-de Vries equation is required to apply modulation theory, the second method of 

derivation is useful as it leads directly to this Lagrangian. Deriving the modulation equations for the 

full extended Korteweg-de Vries equation. [2] 

 
 
In this work, we choose the Bubnov-Galerkin finite element method using quintic B-spline 

are the basis functions. Spline functions have highly desirable characteristics which have made them 

a powerful mathematical tool for numerical approximations, are employed to set up approximate 

functions. The quintic B-spline bases together with finite element methods are shown to provide 

very accurate solutions in solving some partial differential equations. For instance, quintic B-spline 

finite element method for the numerical solution of the Korteweg-de Vries equation is designed by 

Gardner. 

 

 

If we want to talk about KdV applications, we need more than one paper, so we will name 

some of these aplications. Other features in the Jovian atmosphere, such as the Great Red Spot 

(GRS), as visible in cloud patterns, are perhaps the most daring use of KdV to date[8], both the cold 

and the hot plasma mathematically rigorously [9], Plasma physics should be mentioned in any list of 

KdV applications [10]. The soliton features of KdV were first confirmed using ion-acoustic waves 

[11], [12]. 

 

The KdV equation can be solved in many numerical ways like finite difference method [13], 

finite element method [14], [15], and collocation method [16], ect.. 

 

In this study, we’ll examine one sort of KdV equation. the extended KdV equation [17], 

which would be solved by finite element method using Bubnov-Galerkin’s with quintic b-spline. 

First, applying finite elemet method; second, studying Crank-Nicholson Approach; third, introduced 

the initial state; and then apply the algorithm in two experiments.  

 

2. FINITE ELEMENT METHOD 

 

         The finite element method is a very successful application of classical methods such as: the 

Ritz method, the Galerkin method, the Least Squares method; for approximating the solutions of 

boundary value problems arising in the theory of elliptic partial differential equations.[18] giving 

specific applications of the finite element in the three major categories of boundary value problems, 

namely (1) equilibrium or steady state or time-independent problems, (2) eigenvalue problems, and 

(3) propagation or transient problems. 
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The extended KdV equation is solved numerically throughout       that is a finite region 

with boundary conditions. Let a partition of       be                by the equally 

spaced knots    and let quintic B-splines with knots at the points   ,       are       where 

                              are a collection of splines. serves as a foundation for functions 

that are sought within the finite region      . The        solution approximation         to is 

defined as follows:  

        ∑     
                                             (3) 

 

 where    are time-dependent parameters that can be calculated from boundary and condition 

conditions.  

 

                                                           (4) 

 

 The intervals           are used to identify finite elements with nodes at    and     . Each 

element           is thus covered by six splines                  ,            , which are 

represented as a local coordinate system   given by           where           and 

     . The expressions for all of these splines over through the element           are as 

follows [19]  

                            

                                

                                                   (5) 

                                 

                             

          
 

 Outside the interval            , the spline       and its fifth derivatives equal zero. When we 

use Eq.(4) to formulate equations based on the element parameters.   
 , these curves operate as 

"shape" functions for the element. The         variation across the element             is 

provided by  

         ∑     
                                      (6) 

 

The derivatives at the knots and the nodal value of         are expressed in terms of the 

element parameters as shown below.  

 

                                  
    

                              
     

                                              (7) 

     
                               

     
                                     

 

 The dashes imply differentiation in regard to  . When the Bubnov-Galerkin method is applied in 

Eq.(2) using weight functions     , then the result is 

  

∫  
 

 
 (      
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     )                                                                  (8) 

  

We’ll now set up the appropriate element matrices. We have the contribution for the typical element 
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         , we obtain 
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 which the matrix form is formed by  
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where the dot is the differentiation with respect to the time t, and 

 

                                 
                                  (13) 

 

The element matrices are given by 
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 where       take only                       for this element          . The matrices 

         and    are therefore     and   ,   ,    and    are      . Instead of   , 

  ,   ,    we utilise the associated     matrix   ,   ,    and    in our algorithm. In our 

algorithm, we use 

  

    
  ∑     
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This is dependent on the variables   
 . The matrices of elements          and    are determined 

algebraically from Eq.(13), which   
  is given by Eq.(12). The equation below is obtained by 

assembling the elements Eq.(11). 
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 where the matrices               are constructed from the element matrices 

                         respectively in the usual way and  

                           
                              (17) 

 

 

3. CRANK-NICHOLSON APPROACH 

 
 The Crank–Nicolson technique is a finite difference method for numerically solving the 

heat equation and other partial differential equations in numerical analysis [20]. Time centre on 

   
 

 
   , where    is the time step, then utilise Crank- Nicholson method [21], with  
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 Substituting Eq.(17) into Eq.(15), we obtainthe recurrence relationship  
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          (20) 

 

 where the time labels are represented by the superscripts   and    . The system (19) is made up 

of     linear equations with     variables. Four more conditions must be met in order to 

obtain a unique solution to the system. These are derived from the boundary conditions and may be 

utilised to exclude                         from the recurrence relationships (19), resulting in 

an 11 banded             matrix equation. At each time step, an inner iteration is 

performed to verify that the nonlinear term converges. The following is the iteration algorithm [22]: 

First,    is known. The first approximation which is derived from Eq.(17), is calculated   
  

to   using     . The second approximation   
  is found with   

 

 
      

  , and the third   
  

with   
 

 
      

  . We found that 10 rounds are usually enough to get a fair approximation for 

   in this first stage. 

To find a first approximation in general   
    to     , we use      

 

 
         , 

A second approximation   
    is then found from,   

 

 
          and so on. Convergence is 

normally achieved after two or three iterations [23]. 

The time evolution of    is determemined by a system of the decadiagonal [See Appendix 

A], and as a result, after the initial vector of the parameters    is obtained,         can be begun. 

 

4. THE INITIAL STATE 

 
  We using recurrence relationships (19) to begin the time assessment of      by 

determining the vector    from the starting condition. From Eq.(6), if we rewrite the global trial 

functions as follows 

 

         ∑     
           

              (21) 
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  denotes unknown parameters that must be determined.    must meet the following 

requirements in order to determine the initial vector   
  [24]. At the knots   , it agrees with the 

analytical initial condition; applying Eq.(6), it leads to     conditions. The solution of matrix 

equations is then used to get the start up vector    ,  

 

               (22) (21) 

 where  
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      (23) (22) 

  

             
                                            

        
     

    
      

      
      

                           (24) (23) 

 

After determining the initial vector    as the solution of the undecadiagonal matrix 

Eq.(19), the system is solved using a Thomas algorithm. 

The numerical algorithm developed in Section 3 will be validated by studying test problems 

concerned with the migration and interaction of solitons. We use the L2 and L∞ error norms 

to measure the difference between the numerical and analytical solutions and hence to show 

how well the scheme predicts the position and amplitude of the solution as the simulation 

proceeds. The and error norms of the solution are defined by 
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5. EXTENDED KDV SIMULATIONS: SINGLE SOLITARY WAVE SIMULATION 
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5.1  Experiment 1 

 

Subject to the boundary conditions [25] 

 

                                         (26)  

 

 

The analytical solution of of the extended KdV Eq.(2) is as follows  

 

              
 [√

  

  
      ]                             (27)  

 

 

The analytic solution for the initial condition:  

 

              
 [√

  

  
         

 

 
    ]                          (28)  

       

 

   

  Figure 1 comparison between the numerical solution and the exact solution at the same 

time, which agree with the exact solution.In order to determine the accuracy of the current scheme, 

we used                               and      complete the simulation up to 

    . 

Figure 2 Numerical solution at different time [t=0, 5, 10, 15, 20 seconds], which agree with 

the exact solution. In order to determine the accuracy of the current scheme, and shows that the wave 

moves when the time changed. The wave acts like a pulse. 

 

The L2 and L¥ error norms are also recorded and the L2 norm is less than 3*1025, while the L∞ norm is 

less than 6_1019 . 

 

t L2 *1025
 L∞*1025

 

1.0 3.86481324 3638.57688 

2.0 60.22283148626536 233.5064587820526 

3.0 938.4125966520094
 

14.98532752901747 

4.0 146.2266352846622 96.16866373770172*10 

5.0 2278.553052565474 6.171644808688053 

  

Table 1: Error norms for the single solitary wave of the extended KdV equation at t = 1,2, .. ,5 
. 
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Fig(1): Comparison between numerical solution and the exact solution at time 5 seconds 

 
  

Fig(2): Numerical solution at time t=0, 5, 10, 15, 20 seconds 
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6.   EXTENDED KDV SIMULATIONS: TOW SOLITARY WAVES 

 

 
6.1  Experiment 1 

 

Subject to the boundary conditions  

 

 

                                                       (29)  

 

 

The analytical solution of of the extended Extended KdV Eq.(2) is as follows  

 

 

      






































 oo xxxxAxU









4

3
sech

4

3
sech0, 22

1                  (30)  

 

 

The analytic solution for the initial condition:  
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Figure3 comparison between the numerical solution at at time t=5 seconds, which agree 

with the exact solution.In order to determine the accuracy of the current scheme, we used  α=β=0.9, 

in the fisrt term, and α =0.2, β =3 in the second term  x0=18,                   and  A1=1. . 

 

 

 

Figure 4 Numerical solution at time t=0, 5, 10, 15, 20 seconds, which agree with the exact 

solution. In order to determine the accuracy of the current scheme, we used α=β=0.9, in the first 

term, and                                and       complete the simulation up 

to t=20.0 seconds, 

shown in the figure that the two solitons merge and dismerge when the time changed . 
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Fig(3): The numerical solution at time t=5 seconds 

 

 
Fig(4): Numerical solution at time t=0, 5, 10, 15, 20 seconds 
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7.  CONCLUSIONS 

 The Extended KdV equation is a nonlinear transient dispersive equation, any numerical system that 

replicates it must accurately reflect all of its properties. To deal with the fifth derivative of the 

extended KdV equation, Based on Galerkin and quintic B-spline shape and weight functions, we 

developed a one-dimensional B-spline finite element method. The Crank Nicholson technique is 

used to create time discretization. This results in a nonlinear equation system with 11 diagonal 

matrices. Matlab code was used to complete all calculations. To solve the equation in this work, we 

employed the finite element method with a quintic B-spline. We used several functions to study 

extended KdV equation and the wave form in each function in diffierent times. To solve the 

equation in this work, we employed the finite element method with a quintic B-spline. We used 

several functions to study extended KdV equation and the wave form in each function in diffierent 

times. From experiment 1 and 2 (one solitary wave and two solitons), the results obtained proved the 

method to be reliable, accurate and efficient through the calculated error norms. We believe that the 

technique given here could be applicable in other situations where derivative continuity is required. 

We can say that our numerical method can be reliably used to obtain the numerical solution of the 

Extended KdV equation and similar type non-linear equations. 

 

 

Appendix A: An Undecadiagonal Matrix Algorithm 

 Consider the problem of solving   simulation equations, which can be stated as follows:  

            
 where     is a matrix of known coefficients and     and     represent unknown and known 

equations, respectively, and     is a vector of unknown and known equations.[26].  

   

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                      
                       
                        
                         
                          
                           
                           
                
                
                
                                                 

                                              

                                           

                                        

                                     

                      
]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 The 11-diagonal matrix is decomposed into two tridiagonal matrices using LU decomposition. 

When a result, defining the following parameters using forward recursion as needed,  
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 As a result, the lower tringular matrix can be used to deduce the following vector    .  

                                                   
                                                         

         

                                           
 Those calculations then use reverse recursion to angender the computation of the unknown vector 

   from the higher triangular matrix.  
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