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ABSTRACT 

In this paper, the truncated Weibull Rayleigh distribution parameters are estimated using 

progressive type-II censoring. Maximum-likelihood estimates (MLEs) and Bayesian estimates have 

been used as point estimates for these parameters. The asymptotic distribution of MLEs is used to 

create approximate confidence intervals (ACIs) for unknown parameters, the reliability function, and 

the hazard function. In addition, Bayesian estimates can be used to obtain symmetrical and 

asymmetric loss functions such as squared error and Linear Exponential Loss Function (LINEX). 

The Markov chain Monte Carlo (MCMC) technique is used to derive unknown parameter estimates 

via Bayes estimation. An empirical study of the flexibility of the truncated Weibull Rayleigh (TW-R) 

distribution using a real data set. The proposed distribution has been sufficiently improved to fail real 

data from a model Windshield aircraft. As a result, the survival and risk functions were approximated 

to extrapolate data that contributed to the analysis of the Windshield model of aircraft failure under 

the progressive type II censoring scheme.  
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1. INTRODUCTION 

The failure analysis of a Windshield aircraft model with multiple subcomponents required an 

understanding of their failure behavior, which can be accomplished by conducting a lifetime test on these 

components. The failure rate is the probability of failing this test at any given time. If a part, component, 

or system is not working well, it can be upgraded or repaired, and the aircraft's condition can be improved 

to some level. When objects deteriorate, maintenance might be condition-based. Periodic inspection is a 

major maintenance component, and losing the ability to detect items with a higher probability of failure 

during operation can have serious consequences. This significant change is an object storage maintenance 

process that includes extensive aircraft downtime, corrosion and cracks structural sampling, detailed 

system tests, and the replacement of worn components. The Federal Aviation Administration maintains 

the safety problems an aircraft is experienced during operating in the Service Difficulty Reports (SDRs) 

in the United States (US). The SDR database was evaluated as a possible source of information [1]. In a 

comparison of failure rates [2], identified significant factors in explaining the differences in the rate of 

SDR's across carriers, so we restore to applied progressive type-II censoring data. During reliability 

analysis, experiments are frequently ended before all units fail due to cost and time constraints. Only a 

component of the sample offers failure information in these circumstances, and all units that have failed 

have only partial data. Component and unit failure as the primary structure of industrial and mechanical 
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engineering operating systems has been studied by statisticians for a long time. Their research focuses on 

observing supervising units, recording the units' lifetimes, and using statistical inference methods to 

analyze the data. Failure data should be fitted into an appropriate parametric statistical distribution in 

order to identify the parameters of that distribution that lead to estimation of reliability and hazard 

functions. Knowing the structure of two vital functions, reliability and hazard functions, allows 

statisticians to predict with a high level of confidence 95% and make the best decision on the survival 

factor or hazard factor of such models. Some statistical inference approaches such as maximum 

likelihood and Bayesian methods are applied to estimating the parameters of TW-R model under 

progressive type-II censoring scheme using real data sets [3] represents failure times of 63 aircraft 

Windshield. A large aircraft's windshield is a complicated piece of equipment formed of several layers of 

different materials. The windshield comprises a highly robust outer layer and a heated layer below it. 

Failures in these objects are not structural failures. The non-structural outer ply or failure of the heating 

system, on the other hand, usually results in damage or deflection. These failures do not result in aircraft 

damage, but they do necessitate the replacement of the windshield. We consider the data on failure and 

service times given in table1 for a specific model windshield, these data were recently [4]. The data is 

made up of 153 observations, with 88 of them being classed as failed windshields and 65 being 

windshield service times that did not fail when observed. A complicated aircraft is made up of many 

interconnected parts, systems, and components. The design of electrical and mechanical systems has a 

long life expectancy, which is measured in hours. As aircraft and systems get older and more used, they 

gradually decline until they can no longer perform the functions for which they were designed. To put it 

another way, the system fails. Censoring is a common phenomenon in life testing. Assessments that are 

censored come in a variety of forms. Type II censoring is one of the most regularly censored tests. Using 

type II censoring can save time and money. However, if product lifetimes are very long, the censored life 

test type II's experimental time may still be too long. A generalization of Type-II censoring is progressive 

Type-II censoring. [5] presented a life test in which the experimenter might organize the test units into 

many sets, each as an assembly of test units, and then run all of the test units at the same time until the 

first failure in each group occurs. Under the first failure, such an estimation of the Gompertz distribution's 

parameters -sampling plan that is censored [6], statistical inference about the shape parameter of the Burr 

type XII distribution under the failure-censored sampling plan [7] and Estimation of lifetime parameters 

of the modified extended exponential distribution with application to a mechanical model [8].  

When exact survives only reach specific levels in an experiment and only a portion of the test units 

are known for their exact lifetime, censoring is used. There are several types of censored tests available. 

One of the most popular censoring schemes is Type II censoring. Type II censoring is tested on a total of 

n units. Instead, the test is stopped when the              unit failure. We use a progressive type II 

censoring method in our research and evaluate the entire system's reliability and hazard functions using 

the data obtained. The two most common censoring techniques are Type I and Type II. However, because 

some experimental units are costly and extremely accurate, the number of test units and the time required 

to experiment with these units must be decreased. The progressive type II censoring system satisfies the 

demand for good estimators with a short lifetime experiment and the preservation of selected 

experimental units from failure. A progressive type II censoring method can be defined like thus. First, 

the experimenter tests the lifetime with n separate and identical units. When the first failure occurs, say at 

time      ,    units are randomly removed from remaining     surviving units. When the second failure 

occurs at time     ,    units are randomly removed from remaining        surviving units. This 

experiment terminates when the      failure occurs at time   , and        ∑   
   
   . 

An experimenter can avoid the life-testing process altogether, saving time and money for all n items. 

As a result, the test is considered censored, with the collected data being the exact failure times for those 

units that failed and the run times for those that did not fail. When the loss of life test units is unavoidable 

at times other than termination, type-II censoring generalization is useful. The monograph can be used to 

learn about the theory, methods, and applications of progressive censoring [9] and the survey paper [10]. 
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In statistical analysis, a variety of distributions are selected to represent data sets. In recent years, new 

distributions, such as the new distribution, have become more flexible in modelling real data in some well-

known distribution families. The first step in data modelling was to combine some distributions with each other 

in some way, [11] was introduced a new family of continuous distributions based on the Truncated Weibull 

(TW) generating family, called the truncated Weibull Rayleigh distribution. The TW-R distribution provides 

more flexible model. The cdf and pdf of the truncated Weibull-Rayleigh distribution are given, respectively, by 
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         where             ,             are the shape parameters and α  is the scale parameter. 

 

The reliability function is the complement of the cumulative distribution function. If modeling the 

time to fail, the cumulative distribution function represents the probability of failure. 
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[11] introduced a new distribution called the truncated Weibull Rayleigh distribution ( TW-R), Its 

characterization and statistic characteristics are acquired, such as reliability, hazard function, reverse 

hazard function, cumulative hazard function, quantile function,       moment, incomplete moments, 

Rényi and q entropies, and statistic order. The estimation parameters are implemented using the 

maximum estimation method and derived from the Fisher information data matrix. The flexibility of the 

new model in the modeling of windshield lifetime data for aircraft. 

The following paper is arranged. Maximum Likelihood estimates of     and   have been obtained in 

Section 2.  For various loss functions, such as squared error and LINEX in Section 3, the   Bayes 

estimates of                     are derived. Real data sets were analyzed and simulation studies were 

carried out to analyze the properties of the various estimators developed in Section 4 of this paper. Lastly, 

Section 5 presents conclusions. 
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2. MAXIMUM-LIKELIHOOD ESTIMATION 

 

In this section, we study TW-R parameters estimating problems using the maximum-likelihood 

estimators for progressive type-II-censored samples. Based on the observed sample  1<⋯<   from a 

progressive Type-II censoring scheme,                  .  The likelihood function can be written as 

(see [9]) 

      |        ∏        |                 |         

 

   

                     

 

where C is a constant which does not depend on the parameters and it is defined by 

            (  ∑          
   )         |       is pdf in Eq. (1) and         |       is 

the cdf of     in Eq. (2). So, the joint probability density function. By using Eq. (4) is given by, 
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To obtain the normal equations for the unknown parameters, we differentiate Eq. (6) partially with 

respect to the parameters     and   and equate them to zero. The estimators for     and   can be 

obtained as the solution of the following equations. 
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3. BAYSESIAN ESTIMATOR 

In this section, for the unknown parameters     and  , a Bayesian estimate is given beside the squared 

error loss function. The parameters     and   are assumed to be independent from the gamma 

distributions. This is done accordingly 

{

                                     

                                     

                                     

                       

where the hyper-parameters    and            are supposed to be known, and are chosen to represent 

a prior assumption about the unknown parameters. The posterior distribution of the parameters     and   

denoted by          |       up to proportionality can be obtained by combining the likelihood function 

Eq. (6) with the prior via Bayes' theorem and it can be written as 
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                          |       

∫ ∫ ∫                           |      
 

 

 

 

 

 
      

                           (8) 

A common loss function is the squared error-loss function (SEL), an asymmetric loss function that 

assigns equal losses to overestimation and underestimating. If   is the parameter to be estimated by an 

estimator  ̂, then the square error loss function is defined as 

                                        ̂    ̂                                                                (9) 

Therefore, the Bayes estimate of any function of     and  , say          under the SEL we can be 

obtained as 

            ̂                                                                                 (10) 

where 

           (        )  
∫ ∫ ∫ (        )                           |            

 

 

 

 

 

 
 

∫ ∫ ∫                           |      
 

 

 

 

 

 
      

          (11) 

Because of the complex structure of the probability function, the several integrals cannot be 

determined analytically. As a result, the author proposes that samples be generated from the joint 

posterior density function using the MCMC approximation approach and used to compute Bayes, and 

estimates, as well as any other aspect of such samples such as S(t), h(t), and the formation of credible 
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intervals. We consider Gibbs within the Metropolis sampler to apply the MCMC methodology, which 

requires that the entire set of posterior distribution conditional be derived. The joint posterior to the 

proportionality can be written as from Eq. (8). 

 

         |                                            
  

       
  

 

                              
 

∑   
  

   
   ∏   

 
   ∏ (   

 
  

 

   )

   

 
    

∑   (   
 

  
 

   )

 

 
   

 

                            ∏

(

  
   

       
  

(

 
 

   

  (   
 

  
 

   )

 

)

 
 

)

  
 

  

 
                               (12) 

The full conditionals for     and   can be written, up to proportionality, as 
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3.1 Symmetric Bayes Estimation: The inadequacy of difference-based loss functions, such as the 

squared error loss, in recent statistical literature. There have been different alternative loss functions 

suggested, the most well-known [12] normalized squared loss function. The posterior mean for the SEL 

function is the parameter estimator (symmetric). Therefore, the Bayes estimates     and   are obtained 

when compared with the loss function are obtained as, respectively, 
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3.2 A Symmetric Bayes Estimation: In some applications, a symmetric loss function may be ideal. 

Many researchers have lately identified asymmetric loss functions for reliability and lifetime tests. One of 

the most popular a symmetric loss functions is linear-exponential (LINEX) loss function which [13].  It 

used in several papers, for example, [14], [15], [16] and [17].  This function is approximately linearly on 

one side and rises approximately to zero on the other side. The Bayes estimates of     and   against a 

symmetric loss function are, respectively, obtained as 
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Bayes' estimation of     and   cannot be analytically computed. Therefore, we are proposing the 

MCMC technique to produce posterior distribution samples, and then to calculate Bayes' estimates of     

and   and for TW-R      ) distribution under progressive type II censored. Gibbs sampling and more 

general Metropolis-in-Gibbs samplers are an essential subclass of MCMC methods. 

 

 

 

4. THE METROPOLIS-HASTING-HASTINGS-WITHIN-GIBBS SAMPLING 

      [18] analyzed the state calculations equation by fast computer machines, the algorithm called 

Metropolis Hastings [12].  M-H provides a replacement means by evaluating Bayesian inference and is 

frequently used to simulate data from a given posterior distribution using an arbitrary proposal 

distribution. In MCMC technology, the Gibbs and Metropolis-Hastings algorithms are used to generate 

samples from posterior distributions and compute Bayes estimates. When determining the marginal 

distributions of interest parameters is complicated, but the conditional distributions on and parameter 

have good shapes given all the other parameters, the Gibbs sampler is preferable. Conditional 

distributions can be easily simulated if standard parameters are used. However, because generating 

samples from complete conditions that correspond to the joint posterior is complicated, we propose 

combining Metropolis-Hastings with those that are completely a Gibbs chain cycle. However, because 

generating samples from complete conditions that correspond to the joint posterior is difficult, we 

recommend combining Metropolis-Hastings with those that are completely a Gibbs chain cycle. More 

information on this method, see [19], [20], [21] and [22]. Thus utilizing the concept of Gibbs sampling 

procedure as mentioned above, generate sample from the posterior density function under the assumption 

that parameter α, β and σ have independent prior pdf . To corporate this technique we consider full 

conditional posterior densities of     and  , in Eq's (13),(14) and (15). 

It can be easily seen that the conditional posteriors of     and   in Eq's (13), (14) and (15), see [23].  

As a result, gibbs sampling is not an easy way for MCMC implementation; instead, Metropolis-Hasting 

(M-H) sampling is required.  Because of this, the hybrid M-H stage algorithm for updating     and   is 

given below in Eq's (13), (14) and (15). We began using the MLEs for     and   to run the Gibbs 

sampler algorithm. We draw samples from several complete conditions using the latest values of all other 

variables without achieving a systematic convergence pattern. The following steps now illustrate the 

Metropolis-Hastings algorithm method in the sampling process of Gibbs: 

 

1) Start with initial guess                  

2) Set     

3) Excuting the following M-H algorithm, generate           and       from 

  
 (       |                    )   

 (       |                  )   
 (       |                )   

With the normal proposal distributions 

 (             )                                            

i. Generate a proposal    from  (              )     from  (              ) and    from  (              )  
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ii. Evaluate the acceptance probabilities 
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iii. Generate a       and    from a Uniform       distribution. 

iv. If        , accept the proposal and set         , else set             . 

v. If        , accept the proposal and set         , else set             . 

vi. If        , accept the proposal and set         , else set             . 

4) Compute the reliability function, hazard function as 
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5) Set      . 

6) Repeat Steps (3) - (5),   times.  

7) The first M simulated variants are deleted to ensure convergence and remove the affection of initial value 

selection. Then the chosen sample are                       and      ,               , for suffciently large 

 ,  forms an approximate posterior sample which can be used to develop the Bayes estimates of 
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where, (       ) is the burn-in-period of Markov Chain. 

8)     To compute the HPD interval of            and     , order the MCMC sample of     ,     ,     ,       and 

      order   

(                                                                                      

                                                                        )  

Then construct all            credible intervals of  

((                )   (          )) ((                )   (          )),

((                )   (          )),   ((                )   (          )) and  

((                )   (          )). 

5. SIMULATION STUDY 

Compared to parameter estimators and certain lifetime parameters, the reliability function and hazard 

function of the TW-R distribution. For each simulation, Monte Carlo simulations were carried out using 

     sample progressively type-II samples. To produce progressively type-II censored samples from TW-

R distribution, we used the algorithm [24] with the parameters              and      . The Bayes 

estimates of unknown quantities, on the basis of      samples, are derived for two squared error loss 

functions (SEL) and (LINEX).  The mean square error (MES), which was calculated to               

and      were considered to be     
 

 
∑   ̂      

    in the case of             and     . We also 

compare the CIs from asymptotic MLE and MCMC distributions, as well as CRIs. For comparison, the 

average Credible Interval Length (ACL) and coverage proportions (CP) were applied. The real value was 

computed within the interval and length of the CI provided for each sample. The 95 percent confidence 

intervals were computed. This procedure was repeated a thousand times. The estimated likelihood coverage 

of 1000 true values CIs was determined, and the estimated CI width was derived as the total of all lengths 

separated by 1000. For every range. For all range, the results for the approximately estimates and MSE are 

shown in Tables         and  , and     CI of ACL and CP is shown in Tables 9 and 10. 

Table 1: MSE of ML and Bayes MCMC estimates under SEL and LINEX loss function for the 

parameter   with       . 

      CS MLE SEL 

LINEX 

               
  

        

  
 
  

 
  I 

0.4646 0.4648 0.4648 0.4648 0.4648 

(0.0013) (0.0013) (0.0013) (0.0013) (0.0013) 

II 
0.4672 0.4671 0.4671 0.4671 0.4671 

(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) 

III 
0.4707 0.4708 0.4708 0.4708 0.4708 

(0.0009) (0.0009) (0.4708) (0.4708) (0.0009) 

  
 
  

 
  

I 
1.2903 1.2899 1.2899 1.2899 1.2899 

(0.1054) (0.1048) (0.1048) (0.1048) (0.1048) 

II 1.1422 1.1423 1.1423 1.1423 1.1423 
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(0.155) (0.1548) (0.1548) (0.1548) (0.1548) 

III 
0.9618 0.9612 0.9612 0.9612 0.9612 

(0.3183) (0.3185) (0.3185) (0.3185) (0.3185) 

  
 
  

 
  I 

1.2426 1.2431 1.2431 1.2431 1.2431 

(0.1073) (0.1073) (0.1073) (0.1073) (0.1073) 

II 
0.4666 0.4665 0.4665 0.4665 0.4665 

(0.0011) (0.0011) (0.0011) (0.0011) (0.0011) 

III 
0.9615 0.9617 0.9617 0.9617 0.9617 

(0.3073) (0.307) (0.307) (0.307) (0.307) 

Table 2: MSE of ML and Bayes MCMC estimates under SEL and LINEX loss function for the parameter   

with       . 

      CS MLE SEL 

LINEX 

               
  

        

  
 
  

 
  

I 

1.3119 

(0.1086) 

1.3122 

(0.1088) 

1.3122 

(0.1088) 

1.3122 

(0.1088) 

1.3122 

(0.1088) 

     

II 
1.2128 

(0.1673) 

1.2129 

(0.1674) 

1.2129 

(0.1674) 

1.2129 

(0.1674) 

1.2129 

(0.1674) 

III 

     

 

0.9835 

(0.2993) 

 

0.9836 

(0.2988) 

0.9836 

(0.2988) 

0.9836 

(0.2988) 

0.9836 

(0.2988) 

  
 
  

 
  

I 

1.2903 

(0.1054) 

1.2899 

(0.1048) 

1.2899 

(0.1048) 

1.2899 

(0.1048) 

1.2899 

(0.1048) 

     

II 

1.1422 

(0.155) 

1.1423 

(0.1548) 

1.1423 

(0.1548) 

1.1423 

(0.1548) 

1.1423 

(0.1548) 

     

III 

0.9618 

(0.3183) 

0.9612 

(0.3185) 

0.9612 

(0.3185) 

0.9612 

(0.3185) 

0.9612 

(0.3185) 

     

  
 
  

 
  

I 

1.2426 

(0.1073) 

1.2431 

(0.1073) 

1.2431 

(0.1073) 

1.2431 

(0.1073) 

1.2431 

(0.1073) 

     

II 

0.4666 

(0.0011) 

0.4665 

(0.0011) 

0.4665 

(0.0011) 

0.4665 

(0.0011) 

0.4665 

(0.0011) 

     

III 

0.9615 

(0.3073) 

0.9617 

(0.307) 

0.9617 

(0.307) 

0.9617 

(0.307) 

0.9617 

(0.307) 
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Table 3: MSE of ML and Bayes MCMC estimates under SEL and LINEX loss function for the 

parameter   with       . 

      CS MLE SEL 
LINEX 

                         

  
 
  

 
  

I                    

 0.5815 

(0.0076) 

0.5817 

(0.0076) 

0.5817 

(0.0076) 

0.5817 

(0.0076) 

0.5817 

(0.0076) 

     

II 

0.6112 

(0.0141) 

0.6109 

(0.014) 

0.6109 

(0.014) 

0.6109 

(0.014) 

0.6109 

(0.014) 

     

III 

0.7097 

(0.0477) 

0.7097 

(0.0477) 

0.7097 

(0.0477) 

0.7097 

(0.0477) 

0.7097 

(0.0477) 

     

  
 
  

 
  

I 
0.5796 

(0.0074) 

0.5794 

(0.0074) 

0.5794 

(0.0074) 

0.5794 

(0.0074) 

0.5794 

(0.0074) 

II                     

     

0.6239 

(0.0169) 

0.6238 

(0.0169) 

0.6238 

(0.0169) 

0.6238 

(0.0169) 

0.6238 

(0.0169) 

      

III 

0.7407 

(0.0624) 

0.7407 

(0.0624) 

0.7407 

(0.0624) 

0.7407 

(0.0624) 

0.7407 

(0.7407) 

     

  
 
  

 
  

I 

0.5848 

(0.0079) 

0.5848 

(0.0079)           

0.5848 

(0.0079) 

0.5848 

(0.0079) 

0.5848 

(0.0079) 

     

II 

0.6219 

(0.0155) 

0.622 

(0.0156) 

0.622 

(0.0156) 

0.622 

(0.0156) 

0.622 

(0.0156) 

     

III 

0.7114 

(0.0466) 

0.7115 

(0.0467) 

0.7115 

(0.0467) 

0.7115 

(0.0467) 

0.7115 

(0.0467) 
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Table 4: MSE of ML and Bayes MCMC estimates under SEL and LINEX loss function for the 

parameter                                      

      CS MLE SEL 
LINEX 

                         

  
 
  

 
  

I 

0.8314 

(0.0028) 

0.8315 

(0.0028) 

0.8315 

(0.0028) 

0.8315 

(0.0028) 

0.8315 

(0.0028) 

     

II 

0.8221 

(0.0025) 

0.822 

(0.0025) 

0.822 

(0.0025) 

0.822 

(0.0025) 

0.822 

(0.0025) 

     

III 

0.8068 

(0.0022) 

0.8069 

(0.0022) 

0.8069 

(0.0022) 

0.8069 

(0.0022) 

0.8069 

(0.0022) 

     

  
 
  

 
  

I 

0.8264 

(0.0022) 

0.8262 

(0.0022) 

0.8262 

(0.0022) 

0.8262 

(0.0022) 

0.8262 

(0.0022) 

     

II 

 

0.827 

(0.0015) 

0.8268 

(0.0015) 

0.8268 

(0.0015) 

0.8268 

(0.0015) 

0.8268 

(0.0015) 

III 

     

0.814 

(0.0014) 

0.8139 

(0.0014) 

0.8139 

(0.0014) 

0.8139 

(0.0014) 

0.8139 

(0.0014) 

       

  
 
  

 
  

I 

0.8207 

(0.0015) 

0.8208 

(0.0015) 

0.8208 

(0.0015) 

0.8208 

(0.0015) 

0.8208 

(0.0015) 

     

II 

0.8165 

(0.0014) 

0.8166 

(0.0013) 

0.8166 

(0.0013) 

0.8166 

(0.0013) 

0.8166 

(0.0013) 

     

III 

0.8046 

(0.0014) 

0.8047 

(0.0014) 

0.8047 

(0.0014) 

0.8047 

(0.0014) 

0.8047 

(0.0014) 
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Table 5: MSE of ML and Bayes MCMC estimates under SEL and LINEX loss function for the 

parameter                   

 

 

      

 

 

CS MLE SEL 

LINEX 

               
  

        

  
 
  

 
  

I 

5.1165 

(2.3406) 

5.111 

(2.3384) 

5.1116 

(2.3381) 

5.1116 

(2.3387) 

5.111 

(2.3384) 

     

II 

5.1637 

(0.0025) 

5.1696 

(1.8819) 

5.1702 

(1.8812) 

5.1702 

(1.8826) 

5.1696 

(1.8819) 

     

III 

5.0452 

(1.5141) 

5.0426 

(1.5097) 

5.0432 

(1.5089) 

5.0432 

(1.5105) 

5.0426 

(1.5097) 

     

  
 
  

 
  

I 

5.2658 

(1.6872) 

5.2712 

(1.6807) 

5.2719 

(1.6804) 

5.2719 

(1.6811) 

5.2712 

(1.6807) 

     

II 

4.9942 

(1.6112) 

4.9985 

(1.6024) 

4.9992 

(1.6017) 

4.9992 

(1.6031) 

4.9985 

(1.6024) 

     

III 

4.7569 

(1.7696) 

4.7596 

(1.7544) 

4.7602 

(1.7533) 

4.7602 

(1.7555) 

4.7596 

(1.7544) 

     

  
 
  

 
  

I 

5.3913 

(1.0971) 

5.3897 

(1.1034) 

5.39 

(1.1032) 

5.39 

(1.1037) 

5.3897 

(1.1034) 

     

II 

 

 

III 

5.2684 

(1.0501) 

5.2649 

(1.0462) 

5.2652 

(1.0459) 

5.2652 

(1.0466) 

5.2649 

(1.0462) 

     

5.0944 

 (1.0344) 

5.0904 

(1.0377) 

5.0907 

(1.0373) 

5.0907 

(1.0381) 

5.0904 

(1.0377) 
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Table 6: ACL and CP of 95% CIs for the parameters α, β and σ 

  α β              σ 

      CS MLE MCM

C 

MLE MCM

C 

MLE MCM

C 

        

  
 
  

 
  

I                         

0.3639 

(0.961) 

0.0025 

(0.966) 

1.4049 

(0.9408

) 

0.009 

(0.9641

) 

-0.3099 

(0.9702

) 

0.0024 

(0.9284

) 

 

II 

0.3652 

(0.9421

) 

0.0024 

(0.9277

) 

1.3139 

(0.936) 

0.009 

(0.9719

) 

-0.3348 

(0.9606

) 

0.0027 

(0.9413

) 

 

II

I 

0.367 

(0.9747

) 

0.0025 

(0.9287

) 

1.0805 

(0.9299

) 

0.0071 

(0.9448

) 

-0.4337 

(0.9598

) 

0.0037 

(0.9481

) 

       

       

  
 
  

 
  

I     

0.3643 

(0.9723

) 

0.0026 

(0.9575

) 

1.2942 

(0.9565

) 

0.0089 

(0.9251

) 

-0.3082 

(0.9721

) 

0.0024 

(0.9694

) 

 

II 

0.3653 

(0.9485

) 

0.0025 

(0.9464

) 

1.1654 

(0.9589

) 

0.008 

(0.9582

) 

-0.3461 

(0.9503

) 

0.0029 

(0.9309

) 

 

II

I 

0.3672 

(0.9269

) 

0.0025 

(0.9628

) 

0.999 

(0.9362

) 

0.0066 

(0.9269

) 

-0.4587 

(0.9658

) 

0.0043 

(0.9644

) 

        

  
 
  

 
  

I              

0.2575 

(0.9291

) 

0.0017 

(0.9702

) 

0.9454 

(0.9732

) 

0.0066 

(0.9486

) 

-0.3277 

(0.9309

) 

0.0017 

(0.9302

) 

 

II 

0.258 

(0.9737

) 

0.0018 

(0.9253

) 

0.8505 

(0.9452

) 

0.0056 

(0.9408

) 

-0.3664 

(0.9618

) 

0.002 

(0.9747

) 

 

II

I 

0.2596 

(0.9335

) 

0.0018 

(0.9646

) 

0.7422 

(0.9309

) 

0.0049 

(0.9256

) 

-0.4712 

(0.9601

) 

0.0026 

(0.9372

) 
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Table 7: ACL and CP of 95% CIs for the parameters      and       

            

      CS MLE MCMC MLE MCMC 

      

  
 
  

 
  

I 

0.2338 

(0.9648) 

0.0027 

(0.9563) 

6.6623 

(0.9708) 

0.0824 

(0.9746) 

 

II 

0.2224 

(0.9621) 

0.0027 

(0.9647) 

6.141 

(0.9631) 

0.0814 

(0.9266) 

 

III 
0.2295 

(0.9643) 

0.0029 

(0.9475) 

5.6449 

(0.9355) 

0.0797 

(0.9432) 

     

  
 
  

 
  I 

0.224 

(0.9398) 

0.0026 

(0.9744) 

6.5431 

(0.9434) 

0.081 

(0.9479) 

 

II 

0.1953 

(0.9575) 

0.0028 

(0.963) 

5.5654 

(0.9448) 

0.0844 

(0.9641) 

 

III 
0.1977 

(0.9277) 

0.0029 

(0.9712) 

4.9885 

(0.9639) 

0.0783 

(0.9522) 

      

  
 
  

 
  I        

0.1754 

(0.94) 

0.002 

(0.9496) 

4.9231 

(0.9298) 

0.0601 

(0.9648) 

 

II 

0.1605 

(0.9683) 

0.002 

(0.9642) 

4.3649 

(0.9478) 

0.0589 

(0.9711) 

 

III 
0.1639 

(0.9725) 

0.002 

(0.9548) 

3.9953 

(0.9457) 

0.0532 

(0.9436) 

 

From the results, we observe the following: 

1) It is observed that from Tables 4, 5, 6, 7 and 8, as sample size increases, the MSEs decrease and Bayes 

estimates have the smallest MSEs for            and       Hence, Bayes estimates perform better than 

the MLEs methods in all cases considered. 

2) The Bayes estimates are better in terms            and      of having reduced MSEs . 

3) The LINEX estimates with       are better estimates for smaller MSEs with        and       . 

4) In terms of MSEs for samples n fixed values and failure time sizes m, Scheme I performs better than 

Schemes II and III. 

5) Tables 9 and 10, The MCMC, It can be seen that, the CRIs give more accurate results than the 

ACIs, for different sample sizes, observed failures and schemes. 

6. APPLICATIONS TO REAL DATA 

We are presenting numerical results for estimating TW-R model parameters under progressive type II 

censoring with real data sets [3]. The 63 aircraft Windshield failed times, the windshield is a complicated 

component of a big aircraft, with 153 observations, eighty-eight of which are classified as failed 

windshields, and the other sixty-five are service periods for windshields that were not failed when 

observation took place. The data is 
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Table 8: Progressively censored sample based on data of 63 aircraft Windshield failed times. 
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The real data was discussed on the basis of progressive censoring of type-II data for the Truncated 

Weibull-Rayleigh distribution (TW-R). For data, where              we measured the distance of 



 Khalifa, et al AJBAS Volume 3, Issue II, 2022 

 

333 

 

Kolmogorov-Smirnov (   ) between the empirical function and the fitting distributions. In cases of 

complete real data censoring, the convergence of the MCMC estimates for     and   can be shown in 

Table 2. Table 3 list     probability intervals, reliability function and hazard function, show the results for 

Bayes estimates of both SEL and LINEX with different values of the LINEX loss function for the     and 

  parameters, as well as for          and          parameters in Table 2. 

Table 9: MLE and Bayes MCMC estimates under SEL and LINEX for Real Data 

Parameters MLE SEL LINEX 

   
  

      
                 

  795.675 795.675 795.675 795.675 795.675 

  0.814316 0.814931 
0.81493

1 
0.81493 0.814931 

  106.086 104.388 104.746 104.138 104.388 

         0.929137 0.927802 
0.92780

2 
0.927801 0.927802 

         1.91329 2.1067 2.1067 2.1067 2.1067 

 

Table 10: 95% CIs of            and      for Real Data 

Parameters MCMC ACIs 

  (795.675,795.675) (795.675,895.675) 

  (0.812876,0.816798) (0.76316,0.965472) 

  (103.492,105.691) (83.38,128.792) 

         (0.926386,0.930212) (0.901143,0.997132) 

         (1.50089, 2.0205) (1.29666,2.58002 ) 

For c approaching zero, the LINEX loss function is symmetrical, and hence behaves identically to the 

squared error loss function. We further found that the resulting          estimates are roughly 

equivalent to the corresponding Bayes estimates of the squared error. Finally, it is clear that the confidence 

intervals lengths of the Bayes estimators for     and   are smaller than their MLEs. 

 

7. CONCLUSION 

This paper is designed to improve various methods of estimating and constructing confidence intervals for the 

parameters and the reliability and hazard function of the Truncated Weibull Rayleigh (TW-R) distribution. The 

MLEs of the unknown parameters are obtained using asymptotic distributions to suggest different confidence 

intervals. The unknown parameters are also proposed in the Bayesian estimates. It is noted that Bayes estimators 

cannot be obtained explicitly and can be obtained with the help of numerical integration. We used MCMC and it 

is noted that the Bayesian results in practical situations. In addition, loss functions of the Bayes estimates were 

obtained. The numerical illustration was used to illustrate the theoretical results. In a simulation studies the 

performance of the proposed methods for various sample sizes       and various CSs (I,II,III) was examined. 

A simulation study is performed to assess the quality of the proposed estimators and this study showed that the 

Bayesian methods have good performance in all different cases. Hence, it is recommended that depending on the 

Bayesian results in practical situations. 
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