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ABSTRACT 

In this paper, we develop the theory of cellular folding of compact connected surfaces 

onto polygons. The first question that naturally arises from the definition of cellular 

foldings are. “For a given compact connected surface   and a given polygon   , is there 

any cellular folding of   onto   ?”. Also if so, what are the possible topological types?. 

This is the existence problem. 

Firstly, we discuss this problem and we obtain a wide range of existence theorems for 

cellular folding of a given surface onto a given polygon. Any simplicial folding 

decomposes the surface into simplexes of dimensions 0, 1 and 2 which are called 

vertices, edges and faces respectively. 

Secondly, we classify all the possible simplicial folding of the sphere, the connected 

sum of n-tori, and the connected sum of n-projective planes onto a polygon   . For each 

surface, we obtain certain relations satisfied by the number of vertices, edges, and faces 

of the simplicial decomposition of the surface to get either regular simplicial folding or 

just a simplicial folding. 
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1. INTRODUCTION 

         It is known that any surface   is homeomorphic to exactly one of the following            (  

factors) and         (  factors). Here    and    denote the torus and projective plane respectively,   

denote the connected sum operations and     are natural numbers. The numbers     are called the genus of 

  and    is said to have genus 0. We denote by    a closed orientable surface with genus   and by    a 

closed non-orientable surface with genus  . The surface homeomorphic to    or      are orientable with 

Euler characteristic      of   equal to     , while those homeomorphic to      are non-orientable 

with Euler characteristic      equal to    . 
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Definition 1.1: A cell decomposition of a surface   is a cell decomposition   such that for each cell   of 

 , its closure  ̅ is a closed cell, that is if   is an  -cell,      , then  ̅ is homeomorphic to   . A closed 2-

cell is called a face of  , a closed 1-cell is called an edge and a 0-cell is called a vertex. 

Definition 1.2 [1]: Let   be a compact connected surface. A continuous map        of   onto a 

polygon    is called a cellular folding if there is a cell decomposition    of   such that: 

 

1)   is a cellular map of    onto      , 

2) For each closed cell  ̅ of   , the restriction map    ̅ is a homeomorphism of  ̅ onto a closed cell  ̅ 

of      . 

We call    the cell decomposition of   associated to   or simply the cell decomposition of  . 

 

Now, let        be a cellular folding and let    be the cell decomposition of  , the edges and vertices of 

   form a graph    embedded in  . This graph is the singular point set of   for which every vertex has even 

valency [2]. 

In this case the image  (  ) coincides with the boundary of    and that the vertices of     are sent to the 

vertices of    . The graph    is called the folding graph. A regular folding is a cellular folding whose 

folding graph    is regular. A regular folding        for which each vertex has valency   is said to be a 

regular folding of type      . 

A graph Γ is n-colourable if and only if its vertices may be labeled with the numbers         in such a way 

that distinct end points of any edge have distinct labels. In the case of a graph Γ embedded in a surface  , 

where each cell of     has   vertices, we say that Γ admits a cyclic n-colouring if it is n-colourable in such 

a way that the vertices of each cell are cyclically labeled in the sense that labels         are in their natural 

cyclic order module  . 

The following propositions give us some characteristics of a finite connected graph Γ embedded in a surface 

  to be the edge graph of some cellular folding       . 

Proposition 1.3 [3]: Let Γ be a finite connected graph embedded in a surface  , then      for some 

cellular folding        if and only if  Γ admits a cyclic n-colorings. 

Proposition 1.4 [3]: Let        be a cellular folding with   vertices,   edges and   faces, then the 

following relations are satisfied: 

 

1)       

2)        (each vertex has valency   )  

3) Euler characteristic                
 
   . 

4) If   is a regular folding of type        then we have  

         

5) If      is an orientable surface with genus  , then we have 

    
            

  
  

6) If      is  non orientable surface with genus  , then  
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Definition 1.5: Let        and        be cellular foldings, then we say that   is equivalent to   

which is denoted by     if and only if there are homeomorphisms        and          such that  

         . 

It follows at once that     if and only if there is a homeomorphism        such that   (  )    . 

Hence       is a graph isomorphism onto   . Also     implies    . 

Let       and       denote the set of equivalence classes of cellular n-foldings of an orientable surface of 

genus   and a non-orientable surface of genus  . 

As an immediate consequence of (3) in proposition 1.4, we have the following theorem. 

Theorem 1.6 [4]: For each    , each     and each    , the sets       and       are finite. 

As an immediate consequence of (3) in proposition 1.4, we have the following theorems. 

Theorem 1.7 [4]:  

i. For any    ,       and       are empty 

ii. For any    ,       and       are empty 

 

Now, let         and         be cellular foldings. Choose two 2-cells σ and τ of    and    

respectively, let            be the vertices of σ and            be the vertices of τ such that       

     . 

Remove the interior of σ and τ from    and    respectively. Identify the resulting surfaces along the 

boundary of σ and τ in such a way that    and    are obtained. This construction gives us the cellular 

folding of       to    , because the generated graph is also n-colourable with the colouring inherited from 

of    and   . 

 

2.  MORE RESULTS ON CELLULAR FOLDINGS 

 

Definition 2.1: We call the cellular folding obtained of       to    a connected sum of cellular foldings   

and   and is denoted by    . 

Theorem 2.2: Let   be a closed connected surface, if there is a cellular folding        with     or  , 

then there are infinitely many foldings of    to    or   . 

Proof: If there is a folding        , then according to proposition 1.3     admits a cyclic n-colouring.  

For    , the graph    obtained by taking the         barycentric subdivision of     is the graph of 

cellular folding        , since     admits a cyclic 3-colouring. 

For    , since any square may be partitioned into    rectangles by a grid of lines parallel to the edges of 

the square for any given integers      . The graph     obtained by this subdivision is the graph for a 

cellular folding
    

 
of   to   , since     

 admits a cyclic 4-colouring. 

Theorem 2.3: If there is a cellular folding        , then there are infinitely many foldings of    to   . 

Proof: If there is a folding       , then from theorem 2.2 there are infinitely many foldings of   onto 

  . Consider the case where there is a folding        for    . Since there is always a folding        

to   , we have the composition          which is a cellular folding. Then again from theorem 2.2 

there are infinitely many foldings of   to   . 

Theorem 2.4: If there is a cellular folding         then there are infinitely many foldings of    to   . 

Proof: Is similar to the proof of theorem 2.3. 
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It should be noted that the classes       and       both infinite [3]. Suppose that   is an orientable 

surface of genus    , then   is homeomorphic to     . We can exploit this fact together with the 

previous note to show that cellular foldings of   to a triangle and to a square are plentiful. 

Theorem 2.5 [3]: For all    ,       and       are infinite. 

Now, for a compact connected non-orientable surface          without boundary of genus    , 

       there is a double covering           , where        . Thus, if         is a cellular 

folding, then so is                 . Conversely, any cellular folding            that is 

equivalent under the covering group of    induces a cellular folding of    to   . 

Using these facts, we can deduce the following results for non-orientable surfaces from those obtained for 

the orientable case. 

Theorem 2.6 [3]:      ,       and       are infinite. 

Theorem 2.7 [3]: For all    ,        and        are both infinite. 

This theorem can be proved by the use of the connected sum operation. 

Theorem 2.8:  

i. For all    ,       is infinite. 

ii. For all    ,       is infinite. 

Proof: The proof follows by using connected sum operation. To prove infiniteness of      , we know from 

theorem 2.6 that both       and       are infinite. From theorem 2.7 we know that        is infinite for 

all    . Again using the connected sum of both       and        it follows that          is infinite for 

all    . Hence       is infinite for all    . 

To prove infiniteness of      , we know from theorem 2.7 that        is infinite for    . If we know 

that       is non-empty, then using theorem 2.2 we know that       is infinite. Then, again by theorem 2.2 

and by using the connected sum operation for an element of       and elements of       , we get that 

         is infinite. 

The following is an example of folding    to   , 

Example 2.9: The cellular folding         is constructed by the topological identifications of the edges 

as shown in Fig. 1 

 

Fig. 1 Cellular folding from    to    

 

 In Fig. 1, the vertices are labeled        . The edges are identified according to the letters and orientation. 
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3.  SIMPLICIAL FOLDING OF ORIENTABLE SURFACES 

The study of folding of complexes began with E. El-kholy and M. El-Ghoul [5] which was motivated later 

in [6]. 

Definition 3.1 [2]: Let   and   be simplicial complexes, a simplicial map              from   to   is 

a simplicial folding if for every   and all                  i.e.,   maps  -simplexes of    to  -

simplexes of     

In the following subsections, we classify all possible foldings of the sphere and the connected sum of n-tori 

onto a polygon   . 

3.1 Simplicial folding of the sphere 

The map         given by           | | | | | | , where                is the unit sphere in 

Euclidean space    and    is the intersection of     with the positive octant, is a simplicial folding. In this 

case, the graph    is isomorphic to the edge graph of the octahedron and it is called octahedral folding ω of  

  , see Fig. 2. 

 

Fig. 2 The octahedral folding of the sphere 

 

In the case of simplicial folding, the relations (5) and (6) of proposition 1.4 will take the following form 

respectively: 

7)     
   

  
  , for orientable surfaces 

8)     
   

 
  , for non orientable surfaces 

Theorem 3.2 [3]: Any regular 3-folding of     is equivalent to ω. 

Theorem 3.3: The sphere    can be simplicially folded to    if     and   of the graph    satisfy the 

following relations: 

                      where         

In this case the class       is an infinite countable class. 

  

Proof:  Let          be the simplicial foldings of     to   . From relations (1), (2) and (3) of proposition 

1.4, we have       ,         . Thus       , but        
 

 
   ,    

 

 
  and hence 

   . 

Let    , by using the above relations we get,     and     . In fact this folding is the octahedral 

folding     , see Fig. 2 

Now, let    , then      and     , i. e., the graph    of this simplicial folding, if there exist any, has 

7 vertices, 15 edges and 10 faces. This graph can be embedded in    as shown in Fig. 3. 
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Fig. 3 Non folding graph of    if     

 

This graph is not a folding graph since each of the vertices    and    has an odd valency besides the graph 

does not be 3-colourable. 

We know that ∑       | |    
 and the valency of each vertex    besides the number of vertices with 

odd valency is even. Generaly, if the number of vertices α is odd then there will exist at least two vertices of 

odd valency and hence in this case the graph cannot be a folding graph. 

Now, let    , then      and       . This graph can be embedded in    as shown in Fig. 4 

 

Fig. 4 Simplicial folding of    if     

 

This graph is 3-colourable and each vertex has an even valency   . Thus the graph is a folding graph of a 

simplicial folding      
    . 

Consider    , then      and     . The corresponding graph is not a folding graph since there is at 

least two vertices of odd valency. Fig. 5 shows an embedding of this graph in    . 

 

 Fig. 5 Non folding graph of    if     
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Now, let     , then      and     . The corresponding graph can be embedded in    as shown in 

Fig. 6 each vertex has even valency and the graph is 3-colourable. Thus, it represents a folding graph of a 

simplicial folding      
    . 

 

 

 Fig. 6 Simplicial folding of    if      

 

In general, the sphere    can be simplicially folded if               and       , where 

       , i. e., there exists an infinite countable number of simplicial folding of    into   . 

 

3.2. Simplicial folding of the torus 

        The torus is an orientable surface of genus 1. In the following we will classify all the simplicial 

foldings of this surface. 

Theorem 3.4: Any regular simplicial folding of the torus is of type (6, 3). 

Proof: Let         be a regular simplicial folding of     into    of type      , where   is the valency of 

each vertex and     . This graph has   vertices,   edges and   faces. Then, from relation (7), where 

   , we get     
   

  
  . Thus,          implies that     and hence the regular simplicial 

folding is of type (6, 3). It should be noted that there are many other unequivalent regular simplicial 

foldings of     into    but all of type (6, 3), see Fig. 7. 

 

  
 

Fig. 7 Unequivalent regular foldings of type (6, 3)  
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Theorem 3.5: The tours can be simplicialy folded if the numbers of vertices  , edges   and faces   of the 

folding graph satisfy the relations: 

                 and       ,         

or the relation 

            and      ,         

Thus       is an infinite countable class. 

Proof: Suppose that          are the simplicial foldings of    . From relations (1), (2) and (3) of 

Proposition 1.4 we get,       and         . Thus     , also       (
 

 
  )  

 

 
 i.e.,    . 

But the minimum number of vertices   needed to triangulate the torus satisfy the relation   
 

 
(  

√          )   , see [7]. 

If    , then      and     . This graph can be embedded in    as a regular graph of valency 6 as 

shown in Fig. 8 but this graph is not 3-colourable and hence is not a folding graph. 

 

 

 

Fig. 8 Non folding graph of     if    . 

 

Let    , then      and     . This graph can be embedded in    in different ways some is 

colourable and the others is not, Fig. 9 shows two of them. Thus we can define a simplicial folding      
  

   

  

Fig. 9 (a): Folding graph with     Fig. 9 (b): Non folding graph with     

 

Now, let    , then      and     . This graph can be embedded in    as a regular graph of type (6, 

3) which is 3-colourable. Thus we can define a simplicial folding      
    , see Fig. 10. 

130



El-Kholy & Omar AJBAS Volume 2, Issue 1, 2021  

 

 

Fig. 10 Folding graph with     

 

If     , then     ,     . This graph can be embedded in    in different ways. 

Fig. 11 shows some of them, (a) represents two regular graphs of valency 6 and (b) represents two irregular 

graphs. All these graphs are not 3-colourable and hence they do not represent folding graphs of any 

simplicial folding of    . 

  

Fig. 11 (a):  Regular graphs with     , but not 3-colourable 

  

Fig. 11 (b): Irregular graphs with     , but not 3-colourable 

 

By using the same procedure we can easily check that the possibilities of simplicially folding    are given 

by: 

                 and       ,                                          (i) 

or   

            and      ,                                                               (ii) 

Thus the class        is a countable infinite class. 
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Fig. 12 shows 3-colourable folding graphs embedded in    corresponding to      and     , i. e. 

satisfied relations (i) while Fig. 13 shows 3-colourable folding graphs embedded in    corresponding to 

     and     , i.e. satisfied relations (ii). 

 
 

Fig. 12 (a):       Fig. 12 (b):      

3-colourable folding graphs of    corresponding     ,      

  

Fig. 13 (a):        Fig. 13 (b):       

3-colourable folding graphs of    corresponding     ,      

3.3. Simplicial folding of the connected sum of tori 

        We will start with   
    

  , i.e., the double torus which is an orientable surface of genus 2. 

Theorem 3.6: There is no regular simplicial folding of the double torus to   . 

Proof: From relation (7),    , we get 

    
   

  
 . Thus    

  

   
, but    . 

This implies that    . Also if       , then     and this is refused and consequently     , i.e., 

      . This means that     or 10. 

If     , then     , but the minimum nmber of the vertices   to triangulate the double torus is  

  
 

 
(  √         )  

 

 
(  √     ),  

i.e.    , and hence we cannot triangulate the double torus if    . 

Now, if     , then    . Once again, we cannot triangulate the double tours in this case. Hence, this 

surface cannot regularly simplicially folded. 
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Theorem 3.7: The double tours can be simplicially folded an infinite time, i.e., the class       is an infinite 

countable class. 

Proof: Suppose each of   and   is a tours and let               be simplicial foldings. Choose 

two 2-simplexes, triangles,   and   of   and   respectively. Let          be the vertices of   and 

         be the vertices of   such that            . 

Now, remove the interior of   and   from   and   respectively and identify the resulting surfaces along 

the boundaries of   and   in such a way that    and    are identified. This gives a simplicial folding of 

     , i.e., the double torus, because the resulting new folding graph      is also 3-colourable with the 

coloring inherited from those of    and   . 

By using theorem 3.5 we can calculate the cases for which there exists a simplicial folding of the double 

tours. These cases are of cause infinite, i.e.       is an infinite class. 

Note that by using the same procedure, we can show that the connected sum of   tori can be simplicially 

folded. In fact       is infinite. 

 

4.  SIMPLICIAL FOLDING OF NON-ORIENTABLE SURFACES 

In the following, we classify all simplicial folding of the projective plane    and the connected sum of 

projective planes. 

4.1. Simplicial folding of the projective plane    

       The projective plane    is a non-orientable 2-manifold of genus 1. Now, we will classify all the 

possible simplicial foldings of    . 

Theorem 4.1: There is no regular simplicial folding of the projective plane. 

Proof: From relation (8),    , we get 

    
   

 
 . Thus    

 

   
,
 

 

But the number of the vertices     and hence    . Also    , i.e.,       and hence    . By 

using the relation   
 

   
, we get    . Now the minimum number of vertices needed to triangulate the 

projective plane is [√          
 

 
]   , for           , i.e.    , [7]. Thus there is no regular 

simplicial folding of   . 

Theorem 4.2: The projective plane can be simplicially folded if  ,   and   satisfying the following 

relations: 

              and        ,         

Proof: Consider the projective plane   , but the sphere    is a double covering of    , where         is 

the projection map. Thus if         is a simplicial folding of    , then             is also a 

simplicial folding. Conversely, if         is a simplicial folding, this folding by using the projection 

map   will induce a simplicial folding of the projective plane [3]. 

This means that simplicial foldings of the sphere induce simplicial foldings of the projective plane for 

which the number of vertices, edges and faces of the folding graph of    is half of that of the sphere, but by 

theorem 3.3 the sphere can be simplicially folded if the vertices, edges and faces of the its folding graph 

satisfy the relations 

               and        ,         

Thus the vertices, edges and faces of the folding graph of the projective plane must satisfy the relations  

              and        ,         . 
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4.2 Simplicial folding of the connected sum of projective planes 

Consider first the connected sum of two projective planes   
    

 . This surface is a non-orientable surface 

of genus 2. 

Theorem 4.3: Any regular simplicial folding of   
    

  is of the type (6,3). 

Proof: Let     
    

     be a regular simplicial folding of    
    

  into    of type      , where     is 

the valency of each vertex. From relation (7), where    , we get     
   

 
  . Thus,         , 

this implies that      and hence the regular simplicial folding is of  type (6, 3). 

Theorem 4.4: The connected sum of   projective planes can be simplicially folded an infinite number. 

Proof: Suppose that         is the connected sum of   projective planes. For any surface    there exist 

a double covering            , where        ,    , the double cover                is 

the double cover of the projective plane. 

Once again if         is a simplicial folding, the       is also a simplicial folding and the converse is 

true, by using the simplicial foldings of the tori we can obtain an infinite number foldings of the connected 

sum of the projective planes. 

5. CONCLUSION AND REMARKS 

Our main interest in this paper is to know whether and how many cellular foldings of a given surface onto a 

given polygon do exist and to classify regular simplicial and simplicial foldings of orientable and non-

orientable surfaces. 

Now, we put our hands on an open problem. Let        be a regular folding and let    be the cell 

decomposition of   associated to  . Let      be the set of homeomorphisms       which are also 

cellular maps of    at the same time.      becomes a group with respect to the composition of 

homeomorphisms. 

The problem is to know the action of      on the cells of   . A typical question is whether       acts 

transitively on the 2-cells of   .
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