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ABSTRACT
A reductive perturbation technique (multiple scales) is applied to a weakly relativistic warm

unmagnetized adiabatic plasma system consisting of inertial ions fluid and nonextensively dis-
tributed electrons. A nonlinear Schrödinger-type (NST) equation for finite wavenumber at the
second order is derived. Using the reductive perturbation technique we derived the correspond-
ing Korteweg-de Vries (K-dV) equation. For small wavenumber limit the K-dV equation is trans-
formed into NST equation. It is found that the coefficient of the NST equation obtained from the
K-dV equation agree with the corresponding coefficients of NST equation obtained by the multi-
ple scales. Moreover we investigated the effect of the physical parameters of the system namely
temperature ratio of the ion temperature Ti to electron temperature Te, the relativistic factor u0/C
as well as the nonextensive parameter (q) of the distribution on the stability/instability of the sys-
tem. It is found that these parameters affect strongly on the stability/instability regions. Finally,
the validity of our results in astrophysical plasma is briefly discussed.
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1. INTRODUCTION

Ion acoustic wave (IAW) is one type of longitudinal oscillations of ions and electrons in plasma
systems. It is similar to the acoustic waves traveling in neutral gases. The propagation of nonlinear
IAWs in a weakly dispersive medium has been investigated theoretically and experimentally[1, 2, 3,
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4, 5]. Ikezi et al. [6] have reported the first experimental observation of IAWs solitons. Watanabe
[7] studied the modulation instability of the monochromatic IAWs experimentally. The modulation
instability of IAWs in warm non-relativistic plasma has been studied by Xue et al.[8].

The nonextensive statistic mechanics, based on the deviations from Boltzmann-Gibbs-Shannon (BGS)
statistics has been studied in the last few decades. A suitable nonextensive generalization of the BGS
entropy for statistical equilibrium was first investigated by Renyi [9] and afterwards suggested by
Tsallis[10]. Tsallis extended the standard additivety of the entropies of the nonlinear systems. This
nonadditive entropy of Tsallis and the generalized statistics have been investigated in different phe-
nomena characterized by nonextensivity [11, 12, 13, 14, 15, 16, 17, 18, 19] through the entropic index
q, characterizes the degree of nonextensivity of the considered system while the standard extensive
BGS statistics is at q = 1. The nonextensive statistics are successfully applied to many astrophysi-
cal scenarios such as stellar polytropes, solar neutrino problem, and peculiar velocity distribution of
galaxy clusters[20, 21].

If the particle velocity is much less than the velocity of light, ion waves will exhibit non-relativistic
behavior, but when the particle velocity approaches that of light, relativistic effect must be considered.
The modulation instability of IAWs in a weakly relativistic warm plasma for different distribution has
been studied by El-Labany [22] and El-Labany et al.[23, 24]. The cold nonrelativistic modulation in-
stability has been studied for different distributions. It has been studied using nonthermal distribution
by Zhang et al.[25], q-nonextensive distribution by Bains et al. [21], and superthermal (kappa) dis-
tribution by Guo and Mei [26] and Chowdhury et al. [27]. The nonlinear evolutions in plasmas are
investigated by different approximation techniques, in which one assumes small deviations for sys-
tem from the equilibrium state of the linear wave. In fact such multiple scales method [23, 24], the
reductive perturbation technique (RPT) [21] and Krylov-Bogoliubov-Mitropolsky method (KBM)
[28] which lead to nonlinear Schrödinger-type (NST) equation. However, the system of a weakly
relativistic warm unmagnetized adiabatic plasma consisting of inertial ions fluid and nonextensively
distributed electrons has not been investigated; this is our goal.

The skeleton of this article is as follow:
In section 2 we present the basic system of equations representing our model and we derive the NST
equation. In section 3 we derive the small wavenumber approximation Korteweg-de Vries (K-dV)
equation. In section 4 we transform the K-dV equation obtained in section 3 to the NST equation and
results and discussion in section 5. Section 6 is devoted conclusion.

2. BASIC EQUATIONS AND DERIVATION OF THE NST EQUATION

Consider a simple model of adiabatic unmagnetized collisionless weakly relativistic plasma that con-
tains one warm ion species together with nonextensively distributed electrons. The one-dimensional
basic equations can be written in non-dimensional form as

∂n
∂ t

+
∂ (nu)

∂x
= 0, (1)

(
∂
∂ t

+u
∂
∂x

)
(γu)+3σn

∂n
∂x

+
∂Φ
∂x

= 0, (2)

∂ 2Φ
∂x2 = ne−n, (3)

ne = [1+(q−1)Φ]
(q+1)
2(q−1) ≈ 1+α1ϕ−α2ϕ2 +α3ϕ3 + . . . , (4)
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where,

α1 =
q+1

2
,

α2 =
(q+1)(q−3)

8
,

α3 =
(q+1)(q−3)(3q−5)

48
.





(5)

and n , ne are the densities of the ions and electrons respectively, u is the flow velocity of the ions,
Φ is the electrostatic potential, x is the space coordinate, t is the time variable, σ � 1 is the ra-
tio of ion temperature Ti to electron temperature Te and the parameter q stands for the strength of
nonextensively, and γ is the relativistic factor

γ =

(
1− u2

C2

)−1
2

Assuming a weakly relativistic effect the relativistic factor can be approximated by its expansion up
to the second term .i.e. [29]

γ ≈ 1+
u2

2C2 (6)

All physical quantities in Eqs. (1)-(4), u, Φ, n, x and t are normalized with respect to thermal ve-
locity (kBTe/m)(1/2) , thermal potential (kBTe/e) , unperturbed ion density n0, Debye length λD =
(kBTe/4πe2n0)

(1/2) and the inverse of the ion plasma frequency ω−1
pi = (4πe2n0/m)(1/2) respectively,

where m is the ion mass, kB is the Boltzmann constant and e is the electron charge. To derive the non-
linear Schrödinger-type equation, we employ the general method of a multiple scales. In this method
we introduce the independent variables [22]

τi = ε it, ξ0 = x, and ξi = ε i(x−λ t) (i = 1,2, . . .). (7a)

Thus the time and space derivatives in Eqs. (1-4) can be written as [24]

∂
∂ t
−→ ∂

∂τ0
+ ε
(

∂
∂τ1
−λ

∂
∂ξ1

)
+ ε2

(
∂

∂τ2
−λ

∂
∂ξ2

)
+ . . . ,

∂
∂x
−→ ∂

∂ξ0
+ ε

∂
∂ξ1

+ ε2 ∂
∂ξ2

+ . . . ,





(7b)

where ε is a small dimensionless parameter representing the size of the perturbed amplitude and λ
represented the group velocity (λ = ∂ω

∂k ); will be determined later. Now we expand the variables n, u,
Φ in terms of the expansion parameter ε as (EL-Labany 1995 [22])

n = 1+
∞

∑
m=1

εm
m

∑
l=−m

n(l)m (τ1,τ2, . . . ,ξ1,ξ2, . . .)exp[il(kx−ωt)],

u = u0 +
∞

∑
m=1

εm
m

∑
l=−m

u(l)m (τ1,τ2, . . . ,ξ1,ξ2, . . .)exp[il(kx−ωt)],

Φ =
∞

∑
m=1

εm
m

∑
l=−m

Φ(l)
m (τ1,τ2, . . . ,ξ1,ξ2, . . .)exp[il(kx−ωt)],





(7c)

where n, u and Φ are satisfied the reality condition A(m)
−l = A(m)∗

l and the asterisk denotes the complex
conjugate. Substituting Eqs. (7) into the basic equations (1-4), we obtain to the first order of ε and
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l = 1

u(1)1 =
ω̃
k

n(1)1 ,

and

Φ(1)
1 =

n(1)1
(k2 +α1)

.





(8)

With the linear dispersion relation and group velocity λ given respectively by

ω̃2γ1 = 3σk2 +
k2

(k2 +α1)
, (9a)

and

λ = u0 +
k

γ1ω̃

(
3σ +

α1

(k2 +α1)2

)
. (9b)

where γ1 = 1+ 3u2
0

2C2 and ω̃ = ω− ku0.
The components of O(ε) for l = 0 are given by,

n(0)1 = n(0)e1 ,

and

Φ(0)
1 =

n(0)1
α1

,





(10)

However the second order harmonic terms O(ε2) of the reduced equations, with l = 0 are given by,

∂n(0)1
∂ξ1

=
∂u(0)1
∂ξ1

=
∂Φ(0)

1
∂ξ1

= 0,

Φ(0)
1 = 0,

Φ(0)
2 =

(n(0)2 −2α2|Φ(1)
1 |2)

α1
,





(11)

provided that

γ1λ̃ 2 6= 1
α 1

+3σ .

For l = 1 components,

∂n(1)1
∂τ1

= 0,

u(1)2 =
ω̃
k

n(1)2 +
i
k

(
ω̃
k
− λ̃

)
∂n(1)1
∂ξ1

,

Φ(1)
2 =

n(1)2
(k2 +α1)

+
2ik

(k2 +α1)2
∂n(1)1
∂ξ1

;





(12)

i.e. no τ1 dependent.
For l = 2 components, [

n(2)2 , u(2)2 , Φ(2)
2

]T
= [An, Au, AΦ]

T n(1)
2

1 (13)
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where,

An = (k2 +α1)

[
ω̃2

k2

(
3
2

γ1−
ω̃
k

γ2

)
+

3
2

σ +AΦ

]
,

Au =
ω̃
k
(An−1),

AΦ =
(k2 +α1)

3k2

[
ω̃2

k2

(
3
2

γ1−
ω̃
k

γ2

)
+

3
2

σ − α2

(k2 +α1)3

]
,

λ̃ = λ −u0,

and
γ2 =

3u0

2C2 .

The second-order quantities with zeroth harmonic are determined from l = 0 components of third
order O(ε3) and are given by,

[
n(0)2 , u(0)2 , Φ(0)

2

]T
= [Bn, Bu, BΦ]

T |n(1)1 |2 (14)

where

Bn =
1
λ̃

[
2ω̃
k

+Bu

]
,

Bu =
1
z

[
ω̃2λ̃ 2

k2

(
γ1

λ̃
−2γ2

)
+3σ

(
λ̃ +

2ω̃
k

)
+

2ω̃
α1k
− 2α2λ̃

α1(k2 +α1)2

]
,

BΦ =
1

α1

[
Bn(k2 +α1)

2−2α2

(k2 +α1)2

]
,

and
z = γ1λ̃ 2−3σ − 1

α1

Finally, we obtain the NST equation from O(ε3) for l = 1 components by using the above derived
equations as,

i
∂n(1)1
∂τ

+P
∂ 2n(1)1
∂ξ 2 +Qn(1)1 |n

(1)
1 |2 = 0, (15)

where

P =
−k2

2ω̃γ1(k2 +α1)3

[
−(k2−3α1)+

(k2 +α1)
3

k2

(
ω̃2γ1

k2 −
2ω̃γ1λ̃

k
+ γ1λ̃ 2

)]
=

1
2

∂ 2ω̃
∂k2

and

Q =
−k2

2ω̃γ1





(
ω̃2γ1

k2 +3σ
)
(An +Bn)+

2ω̃
k

(
γ1− ω̃

k γ2
)
(Au +Bu)

− 2α2
(k2+α1)2 (AΦ +BΦ)+2

( ω̃
k

)3 γ2− 3
2C2

( ω̃
k

)4− 3α3
(k2+α1)4



 .

Equation (15) satisfies the evolution of the complex amplitude of the nonlinear ion acoustic waves
(IAWs) propagating in a weakly relativistic warm with nonextensively electrons on the basis of the
fluid model in the finite wavenumber region.
For small wavenumber, equation (15) reduces to (appendix)

i
∂n(1)1
∂τ
− 3

2
bk
α2

1

∂ 2n(1)1
∂ξ 2 +

1
3k

a2α2
1

b
n(1)1 |n

(1)
1 |2 = 0, (16)
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where

a =

[
γ1(3σα1 +1)

α1

]−1
2
{
(3σα1 +1)(3α2

1 −2α2)

2α3
1

+
3
2

σ(2α2 +α2
1 )

α2
1

− γ2

γ3/2
1

(
3σα1 +1

α1

) 3
2
}

and

b =

[
γ1(3σα1 +1)

α1

]−1
2

.

3. DERIVATION K-DV EQUATION FOR THE SYSTEM

If we apply the reductive perturbation theory, we can show that the amplitude of the perturbed ion
density in a weakly relativistic warm plasma and nonextensively distributed electrons in the small
wavenumber limit is governed by the K-dV equation. This equation can be derived by introducing
the stretched variables τ and ξ as [30, 31]

ξ = µ
1
2 (x−λ t) and τ = µ

3
2 t. (17a)

Thus,
∂
∂x

= µ
1
2

∂
∂ξ

,

∂
∂ t

= µ
1
2

(
−λ

∂
∂ξ

+µ
∂

∂τ

)
,





(17b)

and we expand the dependent variables as[29],

n = 1+µ ñ1 +µ2ñ2 +µ3ñ3 + . . .

u = u0 +µu1 +µ2u2 +µ3u3 + . . .

Φ = µΦ1 +µ2Φ2 +µ3Φ3 + . . .





(17c)

where ñ is the perturbed ion density and µ is the ordering parameter and is a measure of the size of
the wavenumber k; that is, k=O(µ1/2 ). Using Eqs. (17) in basic set of Eqs. (1)-(3) and equating the
similar power coefficients, the lowest order terms of Îij are written as

ñ = α1Φ1,

u1 = λ̀ ñ1,

and

Φ1 =
ñ1

α1
,





(18a)

where
λ̀ = λ −u0 (18b)

Poisson’s equation gives the compatibility condition

(λ̀ 2γ1−3σ)α1 = 1. (18c)

The next order of µ gives,

∂ ñ1

∂τ
− (λ −u0)

∂ ñ2

∂ξ
+

∂u2

∂ξ
+ λ̀

∂ ñ2
1

∂ξ
= 0, (19a)
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γ1λ̀
∂ ñ1

∂τ
− (λ −u0)

∂
∂ξ

(γ1u2 + γ2λ̀ 2ñ2
1)+ γ1λ̀ 2ñ1

∂ ñ1

∂ξ
+3σ

[
∂ ñ2

∂ξ
+ ñ1

∂ ñ1

∂ξ

]
+

∂Φ2

∂ξ
= 0, (19b)

and
∂ 2Φ1

∂ξ 2 = α1Φ2 +α2
ñ2

1

α2
1
− ñ2. (19c)

Eliminating the second order perturbed quantities and using the results of the pervious order with
some algebraic manipulations we obtain the K-dV equation, which describes the evolution of the
nonlinear ion acoustic waves,

∂ ñ
∂τ

+añ
∂ ñ
∂ξ

+
b

2α2
1

∂ 3ñ
∂ξ 3 = 0, (20)

where a and b are written as

a =

[
γ1(3σα1 +1)

α1

]−1
2
{
(3σα1 +1)(3α2

1 −2α2)

2α3
1

+
3
2

σ(2α2 +α2
1 )

α2
1

− γ2

γ3/2
1

(
3σα1 +1

α1

) 3
2
}

and

b =

[
γ1(3σα1 +1)

α1

]−1
2

.
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Figure 1: The variation of the angular frequency (ω̃ ) with wavenumber (k): (a) for different values
of u0/C and σ = 0.1, (b) for different values of σ and u0/C = 0.2. Here the nonextensive parameter
q = 0.55.

4. DERIVATION OF NST EQUATION FROM K-DV EQUATION
(SMALL WAVENUMBER APPROXIMATION)

To obtain the NST equation from K-dV equation (20) we follow the work by recently by El-Labany
et al.[24] and we reach at

i
∂ ñ(1)1
∂σ
− 3

2
bk
α2

1

∂ 2ñ(1)1
∂ χ2 +

1
3k

a2α2
1

b
ñ(1)1 |ñ

(1)
1 |2 = 0. (21)

which similar with the small wavenumber limit of equation (15) i.e. equation (16).

141



AJBAS Volume 2, Issue 1, 2021 El-Shafeay, et al.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.48

0.50

0.52

0.54

0.56

0.58

0.60

q

λ∼

u0 /C=0.2

u0 /C=0.15

u0 /C=0.1

(a)
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.50

0.55

0.60

0.65

q

λ∼

σ=0.2

σ=0.15

σ=0.1

(b)

Figure 2: The variation of the group velocity (λ̃ ) with nonextensive parameter q: (a) for different
values of u0/C and σ = 0.1, (b) for different values of σ and u0/C = 0.2. Here k = 1.4.

5. RESULTS AND DISCUSSION

Figures (1.a) and (1.b) show the numerical analysis of Eq. (9a) to examine the linear properties of
the IAWs for different values of relativistic factor (u0/C), temperatures ratio σ (= Ti/Te) with the
value of the nonextensive parameter q = 0.55. These figures show that, the phase velocity decreases
with increasing u0/C and is enhanced with increasing σ . Also, figures (2.a) and (2.b) show the group
velocity properties for different values of u0/C and σ , which are given in Eq. (9b). The group velocity
is independent on the variation of u0/C but varies with the nonextensive parameter q, and increases
with increasing σ .

On the other hand, we investigated the variation of the critical wavenumbers (higher and lower
wavenumber) with u0/C for different values of σ (σ = 0.1 and σ = 0.2) as shown in figures (3.a) and
(3.b). These figures show that the upper critical wavenumber decreases as σ increases while the lower
wavenumber remains constant, where σ(= Ti/Te) is always very low ' 0.2. Figures (4.a) and (4.b)
show the variation of the critical wavenumbers with σ for different values of the nonextensive pa-
rameter q. We notice that, the upper critical wavenumber increases with increasing the nonextensive
parameter q and we have only one lower wavenumber which decreases as σ increase.
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k

(a)
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PQ>0
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1.2

1.4

u0�C

k

(b)

Figure 3: Contour plot of the product PQ = 0, depicted against k and u0/C: (a) for σ = 0.1, (b) for
σ = 0.2. Here the nonextensive parameter q = 0.55, where the (white) yellow region represents the
(stability) instability region.
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Figure 4: Contour plot of the product PQ = 0, depicted against k and σ : (a) for the nonextensive
parameter q = 2.87, (b) for the nonextensive parameter q = 4. Here u0/C = 0.2, where the (white)
yellow region represents the (stability) instability region.

Figure 5 shows that, the effect of the q-nonextensively parameter on the stability and instability do-
mains. We find that the increases of the q parameter increase the lower and higher critical wavenum-
bers. Also this figure shows that when q parameter increase the stable region becomes more narrow.
The stable region at σ = 0.1 (figure (5.a)) is larger than the stable region at σ = 0.2 (figure (5.b))
this mean that the system gains more energy and becomes more unstable when the ion temperature Ti

increases.
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k

(b)

Figure 5: Contour plot of the product PQ = 0, depicted against k and q: (a) for σ = 0.1, (b) for
σ = 0.2. Here u0/C = 0.1 , where the (white) yellow region represents the (stability) instability
region.

The comparison between the results obtained by nonextensively and Maxwellian (at the limit of
q−→ 1) distributed electrons are displayed in figures (6.a) and (6.b). It is obvious from these figures
that, the unstable region for nonextensively distributed electrons is larger than the unstable region
for Maxwellian. This means that the nonextensive particles have high energy than the Maxwellian
ones which increase the instability of the system. So, from these results we find that the Maxwellian
distribution is inadequate for explain the highly energetic particles vice the nonextensive distribution.
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Figure 6: Comparison between the contour plot of the product PQ = 0, depicted against k and σ
obtained by the nonextensively distributed electrons in (a) at the nonextensive parameter q = 2 and
the Maxwellian distributed electrons in (b), where the (white) blue region represents the (stability)
instability region.

6. CONCLUSION

In the present work, we employed the nonlinear hydrodynamic equations of a weakly relativistic un-
magnetized adiabatic plasma model including warm ions and nonextensively distributed electrons.
This system of equations is reduced to the NST equation for finite wavenumber by using the mul-
tiple scales method in which the coefficients of this equation are strongly dependent on both ion
temperature σ and the ion streaming velocity (γ1, γ2). We also found good agreement between the
small-wavenumber limit of the NST equation obtained by using multiple scales method and the NST
equation obtained from K-dV equation obtained by using the reductive perturbation method. It is well
known that the stability condition for the NST equation is PQ < 0. Since P is always negative for
ω > ku0, one has to determine the value of the critical wavenumber kC at which Q vanishes. Then, for
all values of k > kC, the wave has modulation instability, while modulation stability for all values of
k > kC . Moreover we investigated the dependence of the stability/instability regions on the physical
parameters σ , u0/C and q characterizing the system. A comparison between nonextensivelly and
Maxwellian distributed electrons is carried out and the validity of our results in astrophysical and
finement fusion plasma. Finally, To show the validity of our results, we consider the cold nonrela-
tivistic limit (σ = 0 and u0/C = 0) of the present work which is found to agree with the work done
previously by Bains et al. [21].

A large number of observations clearly reveal the existence of a weakly relativistic warm plasma and
nonextensively distributed electrons in astrophysics environments such as solar neutrino problem,
stellar polytropes and galaxy cluster as well as finement fusion plasma [20, 21].

Appendix

To estimate the coefficients of the NST equation for small wavenumber (k), firstly we calculate the
different terms appearing in these coefficients.
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From Eqs.(9), as k −→ 0, we have
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where the square-bracket notation indicates the quantity is estimated at small wave number (k−→ 0).
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Thus the coefficients P and Q are given by
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